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Abstract

Spectrum estimation is an essential technique for analyzing time series data. A leading

method in the field of spectrum estimation is the multitaper method. The multitaper

method has been applied to many scientific fields and has lead to the development of

new methods for detection signals and modeling periodic data. Within these methods

there are open problems concerning parameter selection, signal detection rates, and

signal estimation. The focus of this thesis is to address these problems by using tech-

niques from statistical learning theory. This thesis presents three theoretical contri-

butions for improving methods related to the multitaper spectrum estimation method

(1) two hypothesis testing procedures for evaluating the choice of time-bandwidth,

NW , and number of tapers, K, parameters for the multitaper method, (2) a boot-

strapping procedure for improving the signal detection rates for the F -test for line

components, and (3) cross-validation, boosting, and bootstrapping methods for im-

proving the performance of the inverse Fourier transform periodic data estimation

method resulting from the F -test. We additionally present two applied contributions

(1) a new atrial signal extraction method for electrocardiogram data, and (2) four new

methods for analyzing, modeling, and reporting on hockey game play at the Major

Junior level.
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Chapter 1

Introduction

This thesis concerns several important areas of study within statistics and, more

specifically, spectrum estimation and statistical learning theory. The literature review

will cover some currently accepted methods and identify performance problems where

improvements can be made within these areas. We will then address several of these

problems and propose methods that resolve them. Several data-driven projects will

be investigated to highlight the real-world application of these new methods. We will

conclude with our final remarks on these methods and how they may progress with

future research.

The use of methodology from one area of study within another field has been

demonstrated to be effective in solving problems that may otherwise be difficult [9,

134]. The fields of spectrum estimation and statistical learning theory have overlap

and problems have previously been resolved within each by fusing ideas from both

[34,120]. With this in mind we look at the field of spectrum estimation and attempt

to solve problems that arise using statistical learning tools.

Within multitaper spectral estimation [116], three current problems are parameter

1



CHAPTER 1. INTRODUCTION 2

selection for spectral estimation, the detection of line components within the F -test

and prediction or interpolation of data points for a time-series.

The choice of time-bandwidth (NW ) and number of tapers (K) in practice is a

supervised decision. This decision-making by statisticians on the basis of their knowl-

edge of the theory and assumptions of the data can lead to highly variable selections

among members of the same field. In many cases these selections are reported but

their effect is not discussed. While in some situations using particular values for NW

and K is justified [117], we are interested in identifying an unsupervised method for

finding reasonable choices. We would also like to be able to justify a choice of pa-

rameters by identifying when a spectrum is well defined by its multitaper spectral

estimate.

The F -test for line components has been used as a fundamental test in the iden-

tification of signals since the test was developed [116] [83]. While a useful tool for

signal detection, the F -test does have problems with the detection of line components

with moderate power [120]. Missed detection can be costly in communications sys-

tems [135] as well as provide misleading evidence in scientific studies [43]. We will

look to develop a new test to address the problem of missed detection and potentially

improve upon the false detection rates as well.

An area of ongoing active research in time-series analysis is how to predict or in-

terpolate values for a data set [94]. If we operate under the assumption of stationarity,

we can accurately model the periodic elements of the series using a method defined

by Dr. David Thomson [117]. The estimates of the series produced are affected by

the significance level we use to identify periodic components in the data. We would

like to have a consistent and optimal choice of significance level and we will propose
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a cross-validation-based method for making this choice. As extensions to Thomson’s

method, we will investigate how using boosting and bootstrapping methods can help

to improve the estimates we can produce.

The introduction of new methods is important, but our aim is practicality and

applicability to many areas of scientific research. To test the validity of these pro-

posed methods, we attempt to tackle a couple of problems within differing fields of

study. To highlight the practical use of our improvements in parameter selection and

signal detection, we will develop a method to isolate atrial signals within electrocar-

diogram data. In addition, we will propose a variety of statistical tools for modeling

goal production and puck possession in hockey games and estimate data using our

adaptations to Thomson’s method.

The rest of this thesis will be presented over seven chapters. The next chapter will

be our literature review covering the topics required to understand the new material

presented. Chapters 3− 7 will cover a variety of contributions to statistical methods

and data analysis.

The contributions are:

1. Two methods for testing the sphericity of the residuals from the F -test. These

tests are used to identify the correct choices of NW and K.

2. A bootstrapping method for improving the missed and false detection perfor-

mance of the F -test.

3. Three adaptations to the inverse Fourier transform periodic data modeling

method developed by Thomson. The adaptations are: a cross-validation method

for selecting the correct significance level, a boosting method for improving the
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modeling performance, and a bootstrapping method for providing estimates of

the distribution for the modeled data.

4. An improved method for isolating atrial signals within single lead electrocar-

diograms.

5. The development of a data analysis program for Major Junior hockey, including

four new methods for player evaluation. The four methods are: (1) a new

statistic for monitoring neutral zone play, (2) a bagged modeling method for

identifying the optimal line combination of players, (3) a real time data reporting

tool for identifying player quality in-game, and (4) a method for modeling player

contributions to game-play and modeling the residual temporal patterns.

Each contribution chapter will contain data simulations or analysis along with the

proposed new methods.

Lastly we have a conclusion chapter where we discuss the merits and potential

pitfalls of these new methods. We will give suggestions for further advancements on

these topics as well as other possible applications.



Chapter 2

Background and Literature Review

In statistical data analysis we are usually provided with temporally correlated data

[11]. The investigation of the patterns and properties of this data’s time dependence

can lead to a greater understanding of the processes that are truly at work [1,71,103].

The fundamental question of how time is affecting our data is one that is broadly

studied and has a rich history, with many useful methods [46,55,60,98].

Many of the methods in time series analysis follow from the fundamental tech-

niques of statistics, namely hypothesis testing [132] and regression [54]. In the same

way that time series follows from classical methods, we expect that more recent ad-

vancements such as bootstrapping and boosting may provide a strong framework for

time series to follow in the future. To understand how this framework can develop,

we will explore these methods’ origins.

5



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

2.1 Hypothesis Testing

The majority of time series methods rely on signal detection [99], which at its core

is a hypothesis testing problem [84]. Hypothesis testing, much like many other fields

of statistics, finds its roots in the study of physical processes [109, 111]. The origins

stretch back to the works of Laplace [59] on birthrates of European children, in

which he offers example of a null hypothesis. At the turn of the 20th century, Karl

Pearson developed several testing procedures, which would be added upon by his son

Egon in his work with Jerzy Neyman [73] to produce the Neyman-Pearson decision

theory. Independent of the work of Neyman and Pearson, Ronald Fisher developed

his hypothesis testing framework, which championed the use of p-values [32]. This

emphasis was in direct opposition to the rejection region and alternative hypothesis-

based approach of Neyman and Pearson. These two camps would bitterly dispute the

validity of each other’s methods for much of Fisher’s life [61]. As hypothesis testing

began to be more widely accepted, a hybrid of these two approaches emerged, partially

out of confusion by the general scientific community (which Fisher had predicted [32]).

This hybrid method, which is first described by Lindquist [62], uses p-values in the

reporting of tests as well as significance levels and alternative hypotheses. As we

have progressed through the later half of the 20th century, the hybrid method has

grown to be the standard practice among statisticians, but across disciplines we do

not find consistency in notation [75]. For ease of reading, we present the generalized

framework we plan to follow within this thesis.

1. We begin by identifying a property of a population that we are not certain

about and would like to come to some conclusion on. This property may be

parametric, theorizing on a parameter for an assumed distribution of the data,
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or non-parametric, focusing on the values of summary statistics.

2. We follow this by defining a null hypothesis, H0, and an alternative hypothesis,

H1. These hypotheses must be mutually exclusive, the assumed model well

founded and all other assumptions validated; otherwise the performance of the

test will diminish.

3. Next, we define a test statistic and its distribution under the null hypothesis.

4. We now set a significance level for our test. Depending on the sample size that

we expect to collect, the choice of significance level will affect the power (the

probability of correctly rejecting the null hypothesis when it is untrue) of our

test.

5. With a set of data samples collected from our population, we calculate the test

statistic that was defined in step 3.

6. We can now determine the probability of obtaining the sample test statistic or

a more extreme value under the null hypothesis. The definition of extreme is

dependent on the choice of null hypothesis. This is known as the p-value for a

test.

7. Lastly, we compare the p-value to the significance level selected. If the p-value

is smaller, we will reject the null hypothesis in favour of the alternative.

This process can be extended to multiple populations [52], comparisons of groups

within a population [30] and many other areas [3]. As an example of a hypothesis

testing procedure, we will show the steps for Welch’s t-test, a test we will use in

Chapter 6.
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2.1.1 Welch’s t-Test

We have two samples, drawn from two populations. Assuming that the populations

come from independent normal distributions with differing variances, we would like

to test whether the mean of the populations is the same. Then, following the steps

above for defining a hypothesis test, we have the following:

1. We are concerned with the mean of two populations assumed to be from normal

distributions with differing variances.

2. The null hypothesis is that the means are equal for the two populations, H0 :

µ1 = µ2. The alternative can either be that one population is greater than

the other, H1 : µ1 < µ2 (one-tailed), or that they are not equal, H1 : µ1 6= µ2

(two-tailed).

3. We now identify the test statistic as

T =
X̄1 − X̄2√
S2
1

N1
+

S2
2

N2

. (2.1)

Under the null hypothesis we have

T ∼ tv, v =
(
S2
1

n1
+

S2
2

n2
)2

(S2
1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

− 2. (2.2)

4. Given a sample, we can identify the p-value by finding P (T ≥ t) (one-tailed) or

P (| T |≥ t) (two-tailed), where t is the sample value of the T statistic found in

formula 2.1.

5. Lastly, we check the p-value against a set significance level and from there we

are able to report whether there is evidence that the means are equal.
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2.1.2 Fisher’s Combined Probability Test

Another example of a hypothesis test is Fisher’s combined probability test [31]. This

method can be used to combine the results from several independent hypothesis tests

into one test. Combining the p-values from several hypothesis tests with the same

null hypothesis we are able to test if all of the tests fail to reject the common null

hypothesis. We will use this test in Chapter 3. The steps are:

1. We are interested in knowing whether all of the independent tests have evidence

of following the common null hypothesis.

2. This method’s null hypothesis, H0, is that all of the tests follow their common

null hypothesis. The alternative hypothesis, H1, is that one or more of the

hypothesis tests within the group do not follow the null hypothesis.

3. The test statistic is

P = −2
O∑
i=1

ln(pi), (2.3)

where pi is the p-value from the ith hypothesis test. Under the null hypothesis,

P ∼ χ2
2O. (2.4)

4. We can now determine the test statistic from the sample p-values for each

hypothesis and find the overall p-value for the hypothesis across the tests,

P (P ≥ P̂ ) where P̂ is the sample Fisher probability statistic.

5. Last we would check this p-value against our set significance level for evidence

that we should reject the hypothesis that all of the tests follow the common null

hypothesis.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

2.2 Time Series Analysis

The desire to evaluate temporally correlated data has long been a constant within

the fields of science [136]. The main applications for this evaluation are modeling for

prediction [130] or interpolation [133], identification of signals [102] or patterns [8],

determining times of change [138], and exploring potentially correlated variables [47].

Many methods have been proposed to deal with each of these areas, most dealing

with time series data only in the time domain.

Key methods for time series prediction and interpolation are the fitting of auto-

regressive moving average (ARMA) models to the data or the use of curve fitting [18]or

basis expansions [27,117]. ARMA models are the most promenent method across most

fields using time series data. Autoregressive patterns in time series data were first

modeled by Udny Yule [139] and Gilbert Walker [128] in the late 1920’s. With the

full ARMA model being introduced by Peter Whittle in his thesis from 1951 [132].

ARMA models can be considered as parametric models of the running trend and

serial correlation of the time series. Many adaptations and advancements have been

discovered since Whittle’s thesis, including extensions to non-stationary data [127]

and allowance for greater structure than initially suggested [123]. A drawback to

these methods is that model selection can be difficult to employ in an unsupervised

manner and that, even when supervised, there may be little evidence to help guide

you to use one method over another [21]. We are also concerned with over-fitting

when using higher-order models [26].

Curve fitting and basis expansions methods also rely on supervised selection,

whether it is the degree of spline used to fill a gap or the basis used. We will not

go into detail here about the pros and cons of each method but direct you to read
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chapter 5 of [48] for a review of the commonly used methods. Throughout this thesis

we will use these base techniques where applicable to aid us in dealing with low-power

temporal variability that we cannot resolve with the spectrum domain techniques we

propose.

2.3 Spectrum Estimation

A key technique in time series analysis is that of spectrum estimation [86]. Spectrum

estimation is the process of transforming our data set from the time domain to the

frequency domain. We perform this transformation in an effort to study periodic

structure that exist within our data. The periodic structure itself may be of interest,

as in the field of radio communications [49] [105], or we may wish to remove this

structure and look for other properties found in their residuals, a useful practice in

economics [112,122].

Many methods of spectral estimation exist, with the majority of research being

done under the assumptions of Gaussian noise and stationary signals. To understand

the importance of these assumptions, we need to examine the spectral representation

of a stationary process xt, t ≥ 0. The spectral representation is,

xt =

∫ 1
2

− 1
2

ei2πνtdX(ν) (2.5)

where dX(ν) is a zero-mean orthogonal increment process and we assume that xt is

harmonizable [87]. A zero-mean orthogonal increment process is one in which the

correlation of the difference between any two sets of adjacent points is zero. For a

process to be harmonizable, it is required that the covariance function be representable

as the integral of two members of a family of complex functions over a bimeasure on
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R2 [90],

r(s, t) =

∫ ∞
−∞

∫ ∞
−∞

gs(u)gt(v)dρ(u, v), (2.6)

where gi : R → C and ρ(u, v) is the bimeasure. Examining the covariance function

of our process helps us to understand the assumption of stationarity. The covariance

function is

E {x(t1)x
∗(t2)} =

∫ ∫
ei2π(t1f1−t2f2)E {dX(f1)dX

∗(f2)} (2.7)

where E{dX(f1)dX
∗(f2)} is the Loéve spectrum as defined on page 474 in [63]. If the

process is stationary, the covariance function only depends upon the time difference

t2 − t1. This simplifies our covariance function to Riemann integration over the

frequency domain,

E {x(t1)x
∗(t2)} =

∫
ei2π(t1−t2)fS(f)df. (2.8)

If we have a non-stationary process, the Loéve spectrum cannot simplify to a single-

frequency representation and instead relates to γ(f1, f2), the dual-frequency spectrum,

an L1 integrable complex valued function. The Loéve spectrum is instead

E {dX(f1)dX
∗(f2)} = γ(f1, f2)df1df2, (2.9)

where γ(f1, f2) describes the frequency correlation of each f1 and f2 and the covariance

function is instead a double Riemann integral over the frequency domain. Without

stationarity, we do not have a covariance function that is related to the spectrum

of a single frequency like equation 2.8. We use the relationship in equation 2.8 to

estimate the spectrum for stationary processes, but for non-stationary processes the

estimation is not so simple.

Along with stationarity, there is the assumption of normality. Normality is usually

assumed when developing statistical tests for use within spectrum estimation. Under
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this assumption we can obtain spectral estimates that are χ2 distributed [116] when

no signal is present. In the event that a signal is present, the spectrum would be

non-centralized χ2 distributed [124]. We use this property to identify signals through

power estimates and the F -test for line components [116].

With these two assumptions we adopt the following approach to estimate the

spectrum. The basic idea is to take a Fourier transform of the time series multiplied

by a sequence of weights (a window or taper). The choice of window is where most

methods differ [85]. An example of a triangular window is shown in Figure 2.1. For

most methods, depending on the choice of windows, there is a trade-off between the

bias and the variance of the estimate [5]. For windows with more weight near the

edges, we are including more data that is farther away from the signal of interest.

This inclusion of more distant frequencies introduces bias to the estimate of the

spectrum at the central frequency. The converse of this is a more narrow window,

which provides you with fewer data samples and creates higher levels of variability in

your spectral estimate.

2.4 Multitaper Method

This trade-off is controlled when using the multitaper spectral estimation (MTM)

method [116]. The MTM was introduced by David J. Thomson [116] and allows for

bias control without a significant corresponding increase in variance. The MTM is

similar to other methods in that it uses windowed Fourier transforms of the data

series to produce spectral estimates. However, it differs through use of an orthogonal

family of windows instead of a single choice. This orthogonal family consists of a

group of discrete prolate spheroidal sequences (DPSS, or Slepians) [107], several of
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Figure 2.1: Triangular window and fast Fourier transform for 512 points of a sinusoid
centred in frequency, from [76].

which are plotted in Figure 2.2. The Slepian sequences are found by solving the

eigenvalue equation for a positive-definite tri-diagonal matrix [81]. The sequences

are the eigenvectors from the eigendecomposition for the matrix and are ordered by

the magnitude of their associated eigenvalue, from largest eigenvalue to smallest.

By using an orthogonal family of functions the estimates will be computed from

averaging independent sub-spectrum which lowers variance. There are many families

of orthogonal functions, including the commonly used cosine functions [92]. We are

motivated to use the Slepian functions because of their property that the averaged

Fourier transformations of the windows maximizes the ratio of weight for in-band

frequencies relative to out-of-band frequencies [107].
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Figure 2.2: Slepian sequences of order (0, 3) in the time domain with NW = 4, K = 7,
N = 1000.

The method begins by defining a time-bandwidth product NW , with N the num-

ber of data points, and W the bandwidth parameter. Given NW , we choose to com-

pute between NW and 2NW Slepian sequences of length N , ν
(k)
t , t = 0, ..., N−1, k =

0, ..., K − 1, the number of windows denoted by K. We use these as windows for K

Fourier transformations, called the eigencoefficients of the data.

Yk(f) =
N−1∑
t=0

ν
(k)
t e−2iπftxt. (2.10)

The initial naive spectral estimate is then formed as

S =
1

K

K−1∑
k=0

|Yk(f)|2, (2.11)

the average of the K eigenspectra.

The choice of NW and K are important to the shape of the spectrum and, by
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extension, frequency domain−based detection methods. For smaller values of W ,

we get a higher-frequency resolution but increased variance in our estimates. The

opposite hold for larger values. After setting W , the choice of K works as a bias-

variance trade-off. For K closer to 2NW we get more eigenspectra, providing less

variance to the estimates but higher out-of-band power, which increases the bias of

the estimate. Lower values of K do no suffer as greatly with out-of-band bias but have

increased variance. The choice of parameters is important to further evaluation of the

data in the frequency domain. Supervised selection based on known characteristics

of the data is the common practice, although this can lead to selection bias in the

data analysis.

A common trick to improve the frequency granularity of a spectral estimate is

a method called zero padding. In zero padding, we increase the length of our time

series and, by extension, the number of frequency bins we have by adding zeros to

the end of our time series. To apply this to MTM, after we have multiplied our

data by the Slepian sequences, we add the desired number of zeros before taking the

Fourier transforms. This will shrink the size of the frequency bins, allowing for greater

resolution on the spectrum and easier detection of signals in the methods that follow.

A more advanced technique of spectral estimation using the Slepian windows is

found by adaptively weighting the eigenspectra to provide superior bias control [116].

We define

Ŷk(f) = dk(f)Yk(f) (2.12)

with

dk(f) =
λ
1/2
k Ŝ(f)

λkŜ(f) + (1− λk).σ2
(2.13)
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Next we solve for the spectrum estimate Ŝ(f) with

Ŝ(f) =

∑K−1
k=0 |Ŷk(f)|2∑K−1
k=0 |dk(f)|2

, (2.14)

where σ2 = 1
N

∑N−1
n=0 x

2
n is the sample variance and λk is the eigenvalue associated

with the kth order Slepian. We then iteratively solve for both Ŷk(f) and Ŝ(f). This

procedure usually converges in two or three iterations to within a few percent of the

true weights when you start with the naive MTM estimate from equation 2.11 [117].

2.5 Signal Detection and the F -test

With our data now transformed into the frequency domain, we can begin to analyze

the properties of the spectral estimate. The first method that is commonly applied

is to graphically examine the spectral estimate for structure, whether it be spikes

(peaks) or more exotic shapes such as those found in digital communications [83].

It is also possible to use our assumption of normality to test the amplitude of the

spectrum for possible signals, with correction done for the noise floor and shape of

the spectrum by a process called post-whitening [93]. We can use the knowledge

that, in the absence of a signal, the spectrum at any frequency will follow a χ2
2K

distribution as a signal detection method. We know that the spectrum estimated at a

given frequency will follow a χ2
2K distribution because a single-windowed estimate is

χ2
2 (squaring and summing of normals), we are summing K of them in our estimate,

and they are independent by orthogonality of the Slepian sequences. Examining the

spectrum as realizations of a χ2
2K under the null hypothesis that no signal is present

allows us to determine p-values for peaks found in our estimate [124]. This is a

good first test for signal detection. However, since the noise is not independent of
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frequency or not easily flattened by post whitening, it may cause the data to not be

easily evaluated by this type of test.

Another commonly used method of signal detection that is the F -test for line

components [116]. The simplest line component is a sinusoidal signal. The F -test

is computed from the eigencoefficent that are used in the multitaper method. The

F -test is integral to the contributions we make in Chapters 3, 4, and 5, as well as

used in the data analysis of Chapters 6 and 7.

Within the F -test we make the common assumptions of normality and stationarity

as well as the important assumption that time series are made up of a collection of

sinusoids in Gaussian noise. The time series is then assumed to be of the form

xt =
M∑
l=1

αl cos(θl(t+ φt)) +
N∑
j=1

αj sin(θj(t+ φt)) + zt, (2.15)

where φt ∼ U(0, 2π), represents the random phase of the signal and zt ∼ N(0, SN) is

the random noise of the signal with variance SN , the power of the background noise.

Noting that the eigenspectra of a sinusoid is an impulse (vertical rectangle in

the frequency domain) of width W , our model assumption of sinusoids in noise is

analogous to the eigenspectra of the time series being a sequence of impulses centred at

the frequencies of the signals. Then, to determine whether there are line components

within the time series, we model the set of eigenspectra at a frequency as linear

functions of the Fourier-transformed Slepian sequences:

Yk(f) = µ(f)Vk(0) + rk(f), (2.16)

with rk(f) ∼ CN(0, SN) [117].

To detect a signal at a frequency, we test the null hypothesis H0 : µ(f) = 0. To

do this we obtain estimates of the µ(f) from linear regression and then use an F -test
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to determine whether there is evidence that µ(f) is non-zero. The statistic for the

F -test follows an F (2, 2K − 2, p) distribution and is computed by:

F (f) = (K − 1)
|µ̂(f)|2

∑K−1
k=0 |Vk(0)|2∑K−1

k=0 |r̂k(f)|2
, (2.17)

r̂k(f) = Yk(f)− µ̂(f)Vk(0), (2.18)

µ̂(f) =

∑K−1
k=0 V

?
k (0)Yk(f)∑K−1

k=0 |Vk(0)|2
, (2.19)

Vk(f) =
N−1∑
t=0

ν
(k)
t e−2iπft, (2.20)

where Yk are the eigenspectra for our time series xt, and ν
(k)
t are the Slepian sequences

in the time domain. If the F -statistic is above F (2, 2k − 2, p), we will reject the

null hypothesis at significance level 1 − p and will state that a signal is present.

Thomson proposed using a significance level of 1− 1/Nf , where Nf is the number of

frequency bins used in the test. His justification for this cutoff is that under the null

hypothesis we should expect to have one F -statistic at or above the cutoff across all

the frequencies tested.

It is important to note that when performing the F -test, the choice in parameters

NW and K can alter the resulting test statistic. These choices allow us to balance

variance and bias in our spectrum estimate but can have misleading effects on the

residuals from the F -test. Under correct parameter choices, the signals within our

time series can be fully modeled by sinusoids and noise. We define a spectrum to be

resolved when r̂k(f) ∼ CN(0, SN) and the r̂k(f) vectors are independent [117].
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2.6 Bootstrap Methods

Developed in 1979 by B. Efron [24], the bootstrap method uses computational effi-

ciency to work around problems where strict assumptions were required or where the

problems were too complex for classical methods. We will use a bootstrap procedure

to modify the F -test in Chapter 4.

The basic objective in the bootstrap method is to recreate the relationship between

the population and the sample by considering the sample as a perfect representation

of the underlying population. This is accomplished by replacing the data to generate

another set of samples considered analogous to the first. The advantage gained by

this is that we now work around issues of having an unknown population and make

statistical inferences about the population using our samples and re-samples. As a

simple example, this method can be used when we are analyzing a set of independent

and identically distributed (iid) samples from an unknown joint distribution and

we are interested in the mean squared error (MSE) of a location estimate obtained

from the data. To have a direct estimate of the MSE, we would need to know the

distribution from which our samples were taken. Even with this knowledge, the

computations may not be simple or possible. To work around this, we estimate

the marginal distribution of our samples. New samples are then drawn from the

marginal distribution to create a new set of data. The most common method for

drawing samples from the marginal distribution is to sample from the data with

replacement. Other choices are possible, with another common example being a

parametric bootstrap, where you suspect, the data is from a common distribution and

generate new samples from it. Returning to the simple example, with new samples we

can then use the multiple estimates of the location parameter to gain an understanding
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of the MSE.

Another area where the framework of bootstrapping is applicable is multiple linear

regression [25]. Considering the simple model: Y (n) = X(n)B + e(n), where Y is

an N × 1 response vector, X is an N × p input matrix, e is an N length noise

vector and B is an unknown vector of p parameters. These variables are not to

be confused with the time series notation for Y (f) and xt although, while we can

use bootstrap methods on time series data, we are only performing simple regression

here. Assuming we have full rank, we follow classical regression calculations to obtain

an estimate of B, B̂(n) = (X(n)X(n)T )−1X(n)Y (n). We now ask ourselves: how

close is B̂ to the true value of B? If we assume a model where the X(n) are not

random and the elements of e(n) are iid with zero mean and finite variance, we can

devise a bootstrapping method to obtain an estimate of how close B̂ is to B. We

estimate the e(n) values, ê(n) = Y (n) − X(n)B̂, and ensure they are centered on

zero and equi-variant. If the variable being bootstrapped was not centered, we will

be introducing a bias term to our parameter estimates that is dependent on the new

bootstrapped values. We generally transform the ê(n) terms to make them equi-

variant by weighting each ê(i) term by 1√
1−Hii

. Hii being the ith diagonal element of

the hat matrix (H = X(XTX)−1XT ). Then, drawing from the empirical distribution

of e(n), chosen so that we are re-sampling with replacement, we can generate new

estimates for Y (n), Ỹ (n) = X(n)B̂ + ẽ(n), where ẽ(n) are the re-sampled values

of e(n). We now compute B̃ as before, B̃ = (X(n)X(n)T )−1X(n)Ỹ (n). [37] showed

that the distribution of
√
n(B̂− B̃) approximates

√
n(B− B̂) provided n is large and

variance of the inputs is well behaved. With this in mind, if we perform repeated re-

samples to create a set of B̃ values, we can estimate the distribution of our parameter,
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B.

One issue that does present with bootstrapping in many cases is that, when testing

a hypothesis, there are not theoretical distributions available under the null hypoth-

esis. For this reason we generally have to find empirical critical region boundaries for

the test statistic [25]. To do so, we repeatedly generate data under the null hypothe-

sis and perform the bootstrapped hypothesis test. The resulting set of test statistics

is an estimate of the distribution under the null hypothesis. Using the percentile

associated with the significance level you expect to produce will give an estimate of

the critical regions for the hypothesis test. A drawback with this test is that a large

number of samples that potentially are needed to produce more extreme percentiles.

2.6.1 Bagging

Another bootstrapping method, which we will use in Chapter 3, is bagging. Bagging,

was developed by Leo Brieman in 1994 to improve classification problems [12]. It is

most often used on decision tree problems where we wish to avoid over-fitting and

reduce variability in our estimates. It can also be used for regression problems with

minor adjustments.

For bagging, we re-sample M data points from our data with replacement, much

like common bootstrapping, and then analyze the M samples to make a decision.

We repeat this O times, to give us a set of O decisions. Lastly we combine this

set of decisions to obtain an overall decisions. The most often used method for

combining decisions is to select the most common decision. This can be applied to

regression in a similar fashion by modeling each subset and taking the average for the

parameters from the set of O developed. Bagging gives us many of the same benefits
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as other bootstrapping procedures by estimating the distribution of the decisions or

parameters through the use of re-sampling [4].

2.7 Cross-validation

One the most widely used methods for determining prediction error is cross-validation

[56] and one we will use in for our data synthesis method in Chapter 5. The basic

premise of cross-validation is similar to that of non-parametric bootstrap methods,

but instead of re-sampling the data, you are using subsets of the data to form your

conclusions. For k-fold cross-validation, we randomly divide the data into k subsec-

tions. Leaving one subset out at a time, we then develop a model from the remaining

k − 1 subsets. The model we find is then used to predict the output values of the

left-out portion of the data. This gives us an estimate of the prediction error for our

model. We perform this by leaving out each of the k subsets and determining the

prediction error of each. With this we can make decisions about parameter choices in

the model development by choosing the parameter or parameters that minimize our

prediction error. For example, if we were attempting to find the ideal choice of the

penalization parameter in LASSO regression, T , we could use cross-validation to find

the model that has the lowest estimated prediction error [125].

2.8 Gradient Boosting

Another method we will us in Chapter 5 is Gradient Boosting. Designed by Jerome

Friedman in 1999 [38], gradient boosting is a model development method used most

often for prediction purposes. Boosting is a general framework for reducing bias and



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

variance in models that are doing a poor job of describing the data. By iteratively

modeling the data with increased focus on the samples the previous model have

under-performed on then, adding the resulting models together, we are able to better

describe the original data.

For gradient boosting, we are focused on regression problems where single models

do a poor job of describing all of the relationships that exist within the data. To im-

prove on this, Friedman proposed to iteratively model the residuals from the previous

model and make a greedy (over-fitted) estimate from a linear combination of the new

and old models. For a given loss function L(y, F (x)) and set number of iterations,

M , we have the following framework:

1. Fit a regression model, F0(x), minimizing for L.

2. For each m ∈ (1,M),

(a) Fit a regression model, hm(x), to the residuals from the last model, Fm−1(x),

minimizing for L.

(b) Optimize the linear combination of the residual model and last full model

that is, find γopt = argmin
γ

∑n
i=1 L(yi, Fm−1(xi) + γhm(xi)).

(c) Update the overall model, Fm(x) = Fm−1(x) + γopthm(x).

3. The final model is FM .

The choice of loss functions and number of iterations will alter the resulting model.

It is common to used squared error. If a large number of iterations are used, we can

have issues with over-fitting. Depending on the desired use for the model, we can

make these choices to provide an optimal solution.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

2.9 Methods For Data Analysis

2.9.1 Hierarchical Clustering

For classification problems, like we have in our atrial extraction problem in Chapter 6,

clustering methods can be very useful in providing a high level of performance [40,48].

The objective of clustering methods is to group members of a sample from a popu-

lation by similarities within their variables. This is often used to create classification

rules for modeling a population.

A subset of these methods is hierarchical clustering methods [45]. These methods

operate by either starting with all data points in one group and finding optimal ways

to split the group up (called divisive or top-down) or starting with all samples as

their own group and combining the groups together (called agglomerative or bottom-

up). How we define distance between points for the separating/combining groups,

the distance metric, and how we evaluate the distance between groups to choose the

ideal set of groups, the linkage criteria, will greatly affect the results of our clustering

method.

An example of a hierarchical clustering method is Ward’s method [129]. With

Ward’s method we are performing an agglomerative hierarchical clustering by itera-

tively combining the two clusters with minimum squared Euclidean distance. Ward’s

method minimizes the within-cluster variance at each stage and the choice of stage

to select, as the final clusters is not specified. Common choices for linkage criteria are

minimum (single link), maximum (complete link), or the average distance between

points of two clusters [45]. We would then select the stage that provided the optimum

set of link criteria values across all cluster pairs (optimum is defined as giving the
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minimum total or average linkage distance in most situations).

2.9.2 Quality Control Charts

Returning to our discussion of hypothesis testing from section 2.1, a direct applica-

tion is found in quality control theory. When monitoring the quality of a process,

we are generally concerned with the process maintaining a consistent distribution

from sample to sample. First described by Walter Shewhart in 1924 while he worked

for Western Electric’s engineering inspection division [7], quality control charts are

a major tool in controlling the quality of processes. Shewhart’s control charts are

essentially test statistics from sequential samples for a process plotted with signifi-

cance limits. There is a temporal aspect to these charts as it is common for samples

to be plotted sequentially as they are observed. Unlike most of time series statistics,

the evaluation of trends within Shewhart’s control charts is not commonly performed

with statistically rigorous methods but rather is performed with a set of eight rules.

These rules, known as Nelson Rules, were define by Lloyd Nelson in 1984 [72]. They

were designed to identify changes in the distribution of a process using simple observ-

able rules like, for example, Rule 3: A process is out of control (not following the null

hypothesis) if six or more points in a row are continually increasing or decreasing.

We can see in Figure 2.3 that there are three samples (37−39) whose null hypothesis

that their mean is 74.00118, at α = .01, we would reject. These points are considered

out of control in a quality sense. We also find, that under the Nelson rules, sample

40 is out of control because it is the sixth sample in a row above the target mean.

Along with not being statistical in nature, a major problem with the use of Nelson

rules is the increased false detection rate due to the multiple comparisons problem.
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Figure 2.3: Example of a Shewhart Control Chart from the QCC package in R.

One method that has been shown to be extremely useful in practical settings,

including our hockey analysis in Chapter 7, is the exponentially weighted moving

average (EWMA). This model was first proposed by Roberts in 1959 [96] to help deal

with small shifts in the parameters that persist over time but are not significantly

different from the target or expected value. We calculate a weighted mean over all

the samples collected to date with exponential weight that decreases in relation to

increased distance back in time from the current sample.

We define the moving average as,

zt = λxt + (1− λ)zt−1, 0 ≤ λ ≤ 1. (2.21)
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The null hypothesis that we will test is that each sample follows the same target

mean, E(Xi) = µ,∀i. Then, under the null hypothesis,

E(zt) = λE(xt) + (1− λ)E(zt−1), (2.22)

E(zt) = λ
t−1∑
i=0

(1− λ)iE(xt) + (1− λ)tE(z0), (2.23)

with z0 = E(xt) = µ. Now subbing in for Z0 and substituting out the series we get

E(zt) = (1− (1− λ)t)µ+ (1− λ)tµ = µ. (2.24)

Similarly, we have

σzt = σ
λ

2− λ
(1− (1− λ)2t), (2.25)

where σ = V AR(x). From this we can easily test now whether each updated moving

average follows the null hypothesis using a z-test. We can plot sequential values of

zt with the updating critical regions to monitor the process for small shifts. The

variance under the null hypothesis is dependent on t giving a pinched look to the

critical region near t = 0. As t →∞ we have σzt → σ, which gives constant bounds

on the critical region for processes with a long sampling history.

Within this method we need to make decisions on the value of λ as well as the

significance level for our critical region. From the context of quality control, common

practical choices are λ ∈ [.05, .2] and α ≈ .00135 (around 3σ). These are chosen

for their ability to detect small shifts quickly while not having a large false detection

rate; more discussion of this can be found in Montgomery [69]. Performing an EWMA

chart with λ = .2 on the same data as in Figure 2.3, we find that in Figure 2.4 points

14 and 16 are now out of control below the limit. This was not found under the

traditional Shewhart chart.
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Figure 2.4: Example of an EWMA Control Chart with λ = .2 from the QCC package
in R.

2.9.3 Regularized Regression

In the field of model selection for regression, there are many common methods, such

as forward and backward stepwise, best subset, and forward stagewise regression,

that are used regularly [68]. Each of these methods has merit and possible pitfalls.

One such shortcoming is that with subset selection, your model parameters change

in a discontinuous manner which often leads to high variability and the updated

model does not improve upon prediction error [48]. Another issue present in many

common model selection methods is that the selection is supervised, meaning that the

model is chosen by the statistician under the guidance of some methodology. While
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the methods are valid in the appropriate context, not all statisticians are created

equal [77].

Another class of methods for use in regression model selection are known as shrink-

age methods [48]. Also known as regularization, these methods provide an unsuper-

vised and continuous choice of parameters in the regression setting. The general idea

is to perform least squares regression with the Lq norm of the coefficient parameters

being constrained to be less than or equal to a set maximum. The regression model

is now the solution of,

B̂ = argmin
B

(
N∑
i=1

(Yi −B0 −
p∑
j=1

Xn,jBj)), (2.26)

subject to
p∑
j=1

| Bj |q≤ T. (2.27)

In essence, this class of methods constrains the possible choices of parameters to a

region around the origin. Several of these regions are shown in Figure 2.5 and their

relation to the least squares solution is shown in Figure 2.6. The size of this region is

determined by the value of T and the shape of the region is determined by q. When

q is small (< 1), the region becomes concave, restricting the parameter values to

being near their axis. With large q (> 1), the region of possible values is convex,

allowing greater values of each parameter away from their individual axis. The two

leading methods in this class are ridge (q = 2) and LASSO (q = 1) regression. Ridge

regression, also known as Tikhonov-Phillips regularization, constrains the parameters

to a spherical region, which is beneficial for highly correlated data, where the coef-

ficients may be large and in opposing sign [48]. Under ridge regression, the inputs

with greatest explanatory power will be given weight while allowing for considerable
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Figure 2.5: Coefficient regions for regularized regression for two dimensions, from [48].

mixture of inputs.

In contrast, the least absolute shrinkage and selection operator method (LASSO)

is used not only to negate the possibility of large coefficients but also to set some to

zero. The LASSO was introduced by Tibshirani in 1994 [121] and is named for the

ability to shrink a parameter and remove it, there is in fact a cowboy with a lasso

on the home page of Tibshirani. The region for parameters in the LASSO method

is square; this allows for the possibility of the closest choice of parameters to the

least squares solution to be at a corner, where one or more coefficients will be zero.

This acts as soft selection, where instead of having a choice of subsets, you now

have choices ranging from the full least squares solution to negligible weight for any

parameter. Another beneficial aspect of these methods is that parameter selection

is automatic and unsupervised for a given choice of T . It is worth noting that the

choice of penalty parameter T is made by the statistician. The usual method for

this choice is cross-validation and within most computer packages, this is the case.

Computationally, determining the ideal value of T can be quite time-consuming for
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large data sets; this can create problems for the implementation of regularization in

areas like time series, where the data sets are usually quite large. We will use LASSO

regression in our model development in Chapter 7.

Figure 2.6: Constrained regression regions with relation to least squares estimate,
from [48].



Chapter 3

Sphericity Tests for Parameter

Selection

3.1 Introduction

Within the multitaper method, we are required to select parameter values for the

width of the windows for the Fourier transforms known as the time-bandwidth, as

well as the number of windows to be used. The choice of bandwidth (NW ) and

number of windows (K) is in practical settings made by a mix of iterative guessing

and prior knowledge of the data set. These choices can vary drastically and the

choice is not always obvious. At a recent conference session on multitaper spectral

estimation1, the number of tapers used on a range of problems varied by more than

an order of magnitude. While in some situations using larger values for NW and

K is justified, we are concerned with identifying from a naive mindset a sufficient

1The 2013 Interdisciplinary International Conference on Applied Mathematics, Modeling and
Computational Science, in Waterloo, Ontario, Canada

33
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set of parameters to start with. We would also like to be able to justify a choice of

parameters by identifying when a spectrum is well resolved by its multitaper spectral

estimate.

Concerning ourselves with the issue of parameter selection for MTM, the motiva-

tion is to design an unsupervised method for making an educated choice of parameters

with no background knowledge of the data. Utilizing some properties of the Slepian

sequences and the F -test for line components, we are able to address this issue. The

use of this method relies on residuals resulting from the computation of the F -test

for detection of line components.

3.2 Naive Sphericity Test

The first thing that we need is a better understanding of what the choice of NW and

K are actually doing. For NW , we are in fact determining W since N (the number

of samples) is set. The choice of W determines the frequency bandwidth for which

the spectrum is estimated at each frequency. That is, the estimate of the spectrum

at frequency f is based on the information found within the band [f −W, f + W ].

The frequency band around f should ideally only contain a signal centred near f that

is not wider than the band. There is potential when making a naive choice that we

could either choose W too small and not contain all of the signal within the frequency

bin or W too large and have more than one signal present within the bin. The choice

of parameters is constant across the frequency range we are examining, so the choice

made should be reasonable for all signals in that band.

For a set NW , the choice of K will also have to be made. The rule of thumb is

“two times NW minus a couple (1 or 2)”. While this choice is acceptable for many
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data sets, one should not use it without thought. The choice of K determines how

close to the band edge (towards ±W ) we want full weight within our estimation of

the spectrum. At 2NW , we have the closest estimation to a brick-wall (rectangular)

filter that we can produce. While that may be ideal for some signals, as we approach

K = 2NW , we are introducing more out-of-band bias, since the higher order Slepians

have higher side-lobe (the frequencies outside of ±W ) power. This creates a bias-

resolution trade off, where higher values of K may give a better representation of the

signal, but also bias the result.

Moving back to the rule of thumb, by choosing K to be slightly less than 2NW ,

we are making the choice to have full weight almost to the band edge and keep the

out-of-band bias lowered. The logic behind this is that most signals are not perfectly

rectangular or do not reach the band edge. Then the inclusion of the last couple

tapers is only introducing bias. This assumption may be true in some cases, but

we cannot be assured that this will hold for all time series we evaluate. The rule of

thumb then leaves us with only a rough guide for where to start and further analysis

is required.

Under correct parameter choices, we will have our line components fully described

by µ̂(f)Vk(0) and the residuals will follow a standard complex normal distribution. We

do not expect every signal to be fully described, nor do we expect signals that are not

line components or are non-stationary to be. With that in mind, we are not directly

concerned with the value of the residuals at one frequency but rather the overall

distribution of the residuals. We now define that the spectrum has resolved residuals

if rk(f) ∼ CN(0, σ2). An example of well resolved residuals is shown in Figure

3.1. The test then becomes determining if the residuals follow a complex normal
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distribution [117]. The test that is usually used in this case is one for sphericity.

Sphericity occurs when the spread of a random variable in 2 or more dimensions is

equal and uncorrelated. This occurs when the covariance matrix is diagonal. For this

Figure 3.1: Comparison of non-spherical and spherical distributed complex-valued
residuals.

test, we have K sets of residuals that are N long complex vectors. The N long vectors

of frequencies cannot all be used while maintaining the assumption of independence

due to the averaging in the frequency domain that is used to create our spectral

estimates. Within the MTM we are averaging over the frequency range of f ±W for

the spectral estimate at f . Due to this, there is a dependence between frequencies

that are less than 2W apart from each other. We then select a subset of the N values

for each complex vector of residuals that only contains frequencies that are 2W away

from each other. We denote the length of this subset as M .

Since the hypothesis we are interested in is that all of the residuals follow a
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CN(0, σ2) distribution, we concatenate our K subset vectors into one that is MK

long and test the sphericity of all the residual terms together. We follow the test for

sphericity described by S. John [53].

1. We are concerned with the covariance matrix for the real and imaginary parts

of the residuals from the F-test for line components.

2. The null hypothesis is that the covariance matrix is diagonal,

H0 : Cov([A,B]) = σ2I. (3.1)

We have an unknown common variance, σ2, complex-valued sample residual

from the model for the jth eigenspectra at frequency f , rj(f) = aj(f) + bj(f)i,

and the real and imaginary parts in vector form,

A = [a0(f1), a0(f2), ..., a0(fM), a1(f1), ..., a1(fM), ..., ak−1(f1), ..., ak−1(fM)],

(3.2)

B = [b0(f1), b0(f2), ..., b0(fM), b1(f1), ..., b1(fM), ..., bk−1(f1), ..., bk−1(fM)].

(3.3)

3. We identify the test statistic as

ΞN = (MK − 2)[
1

2(1− Ŵ )1/2
− 1] (3.4)

4. Under the null hypothesis we have

ΞN ∼ F2,2MK−4 (3.5)

with

Ŵ =
tr((MR̂)2)

(tr(MR̂))2
, R̂ = Cov([A,B]). (3.6)
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5. Given a sample, we can identify the p-value by finding P (ΞN ≥ ξN), where ξN

is the sample value of the ΞN statistic found in formula 3.5.

6. Lastly, we check the p-value against a set significance level and from there we are

able to report whether there is evidence that the covariance matrix is diagonal.

In simple simulations with few spaced signals, the choice on NW and K does not

greatly effect the sphericity of the residuals. This is due to the majority of frequencies

only estimating noise, which will be resolved no matter the choice. This will be further

explored in the simulations section to follow. That being said, with real data sets and

a fair amount of computer power, one could use this test in one of two ways. First, if

you have made a choice of parameters and would like to know if it is reasonable for

your data, you can perform this sphericity test to see if your residuals are resolved.

If we fail to reject the null hypothesis then the choice of parameters was acceptable.

This test can act as a check for one’s assumed choice and provide statistical evidence

to support it.

The other option is that if one wants to make a naive choice of parameters for

their data, they may want to run this test for a range of choices of NW and K. The

literature suggests NW as small as 2 [89] and in practical settings that NW can be as

large as 100 [50]. It is also noted in Slepian’s original discussion of the band-limited

maximized concentration properties that we should choose NW to be an integer [106].

This would allow us to select K as large as 2NW or the closest integer. From this, we

realistically should expect NW ∈ [2, 100] ∩ Z. For values of K, it seems appropriate

to allow a range from NW to 2NW , possibly not allowing a range that wide as NW

gets large (> 10) for computational consideration.

Performing the sphericity test for a range of NW and K then choosing the largest
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p-value across all choices is a good naive method for selecting NW and K. In the

event of two choices with the same p-value we selected the smaller values of NW and

K. This was done to save computational costs in implementing the sphericity tests

in the later chapters. This can be simplified for computational efficiency by choosing

a coarse ladder of NW values and setting K = 2NW − 1. This method would be a

good first pass before choosing a finer range to investigate more thoroughly.

This test is a good first step in choosing NW and K, while some intuition about

the data and graphical examination should be used to further tune the spectral es-

timates. It is also important to note that if the signal is not stationary or has a

considerable number of components that are not lines, this test will fail as the residu-

als will also deviate in distribution. Careful graphical analysis can avoid many issues

with non-line components. We do not want to employ stationary spectral methods on

time series with large non-stationary components, so failure in this test is welcomed

in that case. We may be interested in evaluating series with minor non-stationary

components and in this situation we do not expect a significant amount of deviation

in the distributions of the residuals. For completeness, in time-series analysis one

may want to perform a test for non-stationarity beforehand to avoid that situation

all together but there are many types of non-stationarity so avoiding all of the possible

pitfalls is difficult from a diagnostic standpoint.

3.3 Bagged Sphericity Test

In situations where the power (variance) of the noise in the time series, σ2, is well

known or easily estimated we can adapt the sphericity test to include this information
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and provide a further refined result. We accomplish this by altering the null hypoth-

esis to relate to a specific covariance matrix rather than the looser requirement of

diagonality. In this situation, the testing procedure follows the work of Korin [57]

and Anderson [3].

1. We are still concerned with the covariance matrix for the real and imaginary

parts of the residuals from the F-test for line components.

2. The null hypothesis is that the covariance matrix is diagonal with a specific

variance structure,

H0 : Cov([A,B]) = σ2I. (3.7)

σ2 is the known common variance. A and B are as defined in equations 3.2 and

3.3.

3. We identify the test statistic as

ΞB = ρ(MK − 1)(log | σ2I | − log | Ŵ | +tr(Ŵ (σ2I)−1)− 2), (3.8)

with ρ = 1− 15
18(MK−1) .

4. Under the null hypothesis we have

ΞB ∼ χ2
3 + ω(χ2

7 − χ2
3) (3.9)

with ω = 47
432(MK−1)2 and Ŵ defined as in the naive sphericity test.

5. Given a sample, we can identify the p-value by finding P (ΞB ≥ ξB), where ξB

is the sample value of the ΞB statistic found in formula 3.5.

6. Lastly, we check the p-value against a set significance level and from there we

are able to report whether there is evidence that the means are equal.
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Unfortunately, implementing this test directly runs into two significant compu-

tational issues. First, to avoid issues with round off errors for small values when

computing the determinant of the sample covariance matrix in R, we need to ensure

to scale the time series so that it has an estimated background noise of σ2 > 1. This

alleviates the possibility of the computation of either determinant to be rounded to

zero or negative.

The other and more fatal issue that occurs is that the test is not immune to the

increasing size of available data when we increase NW and K for a fixed N . As K

increases, the number of occurrences of frequencies with signals to be resolved relative

to those without decreases. This will increase the sphericity of the residuals without

attending to the issue of resolving the signals in the data set. In addition to this, as

the amount of data used, M , increases so does the effect of the variance reduction

for larger values of NW . For data sets with M > 100, during simulations, large

values of NW had residuals that were more spherical. This effect can be attributed

to averaging over more signals when widening the frequency bandwidth W used in

estimating the spectrum. This is similar to over-fitting the data and does not provide

accurate frequency estimates for time series prediction.

To avoid this issue of sample size and provide a choice that is geared towards

use in predictive models from MTM, we use a bagging algorithm, similar to what we

described in Section 2.6.1, to select constant sized and random samples of the residu-

als. We then perform hypothesis testing on each sample and use Fisher’s method for

combining p-values, as discussed in Section 2.1.2, to consider the sphericity of each

sampling collectively. The procedure is adapted from equation 3.8 with the addition

of a preliminary sampling stage and the use of Fisher’s method at the end to provide
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a single p-value. The procedure is as follows:

1) Sample the residuals with replacement O times to be used as separate data sets.

2) Test the null hypothesis, H0 : Cov([Â, B̂]) = σ2I, for all O sets of samples using

the statistic from equation 3.8 and then calculate the p-value for each set.

3) Use Fisher’s combined probability test to determine the overall p-value of the com-

bination of the O sets of samples. Then, as noted in section 2.1.2, the test statistic

for Fisher’s Method is

P̂ = −2
O∑
i=1

ln(pi) ∼ χ2
2O. (3.10)

From this procedure we can now obtain a statistic of how well the residuals are

resolved from the choice of parameters. This test gives a good approximation of

the p-value for the known noise sphericity of the residuals and by proxy how well the

spectrum is resolved for a set of parameters but suffers from two potentially significant

issues.

There is the potential to have runs which include only frequencies that contain no

signal or only perfectly resolved signals, which will have p-values near one no matter

the parameter choice. Within Fisher’s method these near one p-values will cause

Fisher’s method to produce an insignificant result with no consideration for the other

set’s p-values [51]. To avoid this issue we truncating the maximum p-value for any

set to 1 − 1/O, which will alleviate this issue but will increase the false detection of

the test [79].

In the situation where there is not a well informed estimate of the power of the

noise in the time series the p-values given will be potentially misleading. As this

testing procedure is evaluating how close the sample covariance matrix of the residuals

is to σ2I, if we have an improper choice of σ2 we are not evaluating the correct
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hypothesis. This may cause us to make a decision to use a parameter set that is not

in fact the optimal choice. The effects of these issues will be investigated later in this

chapter.

3.4 Simulations and Comparison

In an effort to demonstrate the merits of the tests designed in this chapter, we at-

tempted to create a situation where the signals present would have theoretical range

of acceptable values and to determine if the tests could make an unsupervised choice

of parameters within the range.

The objective was to determine if the two sphericity tests would choose the ideal

theoretical choice of NW and K for a known time-series. To test for NW we devised a

data set that is the sum of evenly spaced signals across the frequency band, f ∈ (0, .5)

in white noise. The spacing between the centres of each signal is .013Hz with each

signal being a combination of five sinusoids of decreasing amplitude moving away

from the central frequency. This type of signal is known as a singlet in seismology.

X(t) =
38∑
i=1

αi

2∑
j=−2

(.3− .1 | j |) sin(2π(.013i+ .002j)t) + zt, (3.11)

where αi is a random amplitude for each signal that is taken from U(.5, 1) and zt ∼

N(0, 2). An estimate of the spectrum for three of these signals is shown in Figure

3.2. With this spacing and 1000 samples, we would ideally have a choice of NW

that is 1000 × .013/2 = 6.5. Now a spacing larger than NW = 7 would cause there

to be significant overlap in the signals, introducing bias. As the outer sinusoids are

.008Hz from each other, a choice of NW = 1000× .008/2 = 4 would be an acceptable

lower bound. We choose a 5 pronged signal so that with too small a choice of NW
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we would not capture the full signal. We do note that it could be possible to isolate

each sinusoid in the signals by having W < .002. To achieve this we would need

NW < 1000× .002 = 2, which past research implies is not ideal due to high variance

in the spectrum [115]. We will only test for NW ≥ 2 but do note that smaller

values could provide a resolved spectrum. We computed both sphericity test for

Figure 3.2: Part of the spectrum showing three test signals for the sphericity test,
NW = 4, K = 7, N = 1000.

NW ∈ [2, 10] and K ∈ [2, 20] to determine the optimal parameter choices for our

simulated data.

Performing the naive sphericity test on X(t), we found that NW = 6 and K = 10

provided the lowest probability of the residuals not being spherical. The bagged

sphericity test with O = 50 had a similar parameter choices of NW = 6 and K = 8.

These results are within our theoretical range on the parameters and goes along with

our motivation for a good uninformed first choice of parameters. We also notice
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that as NW moves away from the theoretically reasonable choices, where overlap in

the signals would occur and the p-value drops, this is visible in the naive test for

sphericity, Figure 3.3. The probability also is lower for large K; this may be caused

by the signals having little power at the band edge.

While the tests do agree on similar choices of parameters, they do observe slightly

different characteristics. The naive test has considerably higher p-values, with the

maximum being around .9547, compared to the bagged tests maximum p-value of

.6429. Further testing did show that as O increased the p-values of bagged test

decreased. Additionally the naive test had more parameter choices with p-values

near the maximum, while the parameter values near the choice were similar in scale

for the bagged test but all other values had p-values of 0.

To examine the performance of both methods we additionally performed 1000

simulations of five-pronged sinusoidal data with noise to determine how often a the-

oretically acceptable choice was given. As we can see from Figures 3.5 and 3.6, there

is similar performance for both methods. We found that there was an increase in

proportion found within the theoretical region by the bagged test with 73% of the

parameter selections being within the range compared to 64% for the naive test. Using

a two population z-test for proportions we found that the p-value for the hypothesis

that the bagged proportion is not greater than the naive test was 7.38 × 10−6. This

is highly improbable and shows that we do have a significant improvement from the

bagged test.

The choice of O within the bagged test had several effects on the results of the

test. First, when we increase O there is convergence in the choice of parameters with

the highest p-value, that is as O increases the likeliness of the parameters with the
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Figure 3.3: Naive sphericity test of simulated evenly spaced 5-pronged sinusoids in
noise for NW = [2, 10] and K = [2, 20].

Figure 3.4: Bagged sphericity test with O = 50 for simulated evenly spaced 5-pronged
sinusoids in noise for NW = [2, 10] and K = [2, 20].
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Figure 3.5: Proportion of parameter selections of the naive sphericity test for 1000
repetitions of simulated evenly spaced five-pronged sinusoids in noise for
NW = [2, 10] and K = [2, 20]. All parameter choices not listed were not
selected.

Figure 3.6: Proportion of parameter selections of the bagged sphericity test with O =
50 for 1000 repetitions of simulated evenly spaced five-pronged sinusoids
in noise for NW = [2, 10] and K = [2, 20]. All parameter choices not
listed were not selected.
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Figure 3.7: Effect of number of runs, O, on maximum p-value for the bagged spheric-
ity test

highest p-value changing from one computation to the next decreases. This results

from the sampling method used, as the total number of runs increases, the test will be

sampling more combinations of the data. As well, with a larger value of O, Fisher’s

statistics will be summing over more p-values and the parameter choices that only

work well on particular combinations will increase in p-value as more combinations

are potentially used. This effect also explains the decrease in maximum p-value for

Fisher’s statistics as O increases, the number of combinations that contain poorly

resolved residuals that are included will increase with O and their p-values near 0 will

decrease the Fisher Statistic. This makes logical sense as the alternative hypothesis

is that one or more of the group of sphericity tests fails. We can see this relationship

in Figure 3.7.

This convergence property does come at the cost of computing time. Figure 3.8
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shows a linear relationship between the computing cost and the number of runs used.

The naive sphericity test for reference comes in at an average computational cost of

1.1sec for the same data set.2

For small values of O, there is considerable variance in the parameters returned

as ideal. To demonstrate this property, we evaluated the bagged sphericity test 1000

times for O = 10 on the same data set. We then plotted the percentage of occurrences

for which each parameter was the ideal choice. As you can see in Figure 3.9, there

is a large set of values chosen to be the ideal parameter choices for a given sample.

Fortunately, we still outperformed a random selection of parameters with a proportion

of theoretically reasonable choices of .588 compared to 26
63

= .413 if we were to have

a uniform probability of selecting any combination from the possible parameters.

While it appears that both tests are effective in this circumstance, we would like

to know what effect an improper estimate of σ2 might have on the bagged test. To

examine this, we repeated this simulation but with a variety of incorrect choices of

noise power from σ ∈ [0.6, 3.7]. The result of the average of 20 trials at each choice

in the range, displayed in Figure 3.10, showed that the more you misspecify the

noise variance the less likely you are to correctly select the parameters. The smaller

numbered parameters being selected more often as we start to choose values farther

away from the correct noise variance is a result of our code providing the smallest

parameter choice that gives equal probability. As we begin to make increasingly worse

choices, the p-values increase to the point that all choices are equally poor, having

values of 1. We notice the near edge of reasonable choices for the noise variance

we find an increased variability in choices of parameter. This effect was due to all

2All computer analysis in this thesis was performed in R 3.1.2 on an Apple Macbook Pro 13”
running OS X 10.8.5 with a 3GHz Intel Core i7 and 8GB of RAM.
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parameter choices being near 1. In addition, we show in Figure 3.11 that all p-values

were 1 for all parameter choices at the extreme values we tested, which demonstrates

that this test fails in the event that you do not have a reasonable estimate of the

noise variance. We also notice that the bagged test appears to be more robust to over

estimating the noise level rather than underestimating.

As a note on the choice of variance for the bagged test, for all tests here where we

did not specify the noise level used, we used σ2 = 2. In practice it is uncommon to

have the true value of the noise variance as we do. You are more likely to estimate

the sample variance from the residuals. Now noting

(MK − 1)S2

σ2
∼ χ2

MK−1, (3.12)

we can identify theoretical confidence interval on the sample variance we expect to

observe for the residuals. From 3.12 we get the α confidence bounds for the sample

variance are

χ2
MK−1,α/2σ

2

MK − 1
< S2 <

χ2
MK−1,1−α/2σ

2

MK − 1
. (3.13)

Noting that for our simulations K ∈ [2, 20] and M ∈ [50, 250], we have a α = .01

confidence interval that could have resulted in observing sample standard deviations

as small as 1.18 or as big as 1.649 when MK = 100. The confidence intervals for

MK > 100 are tighter than those for MK = 100. From looking at Figure 3.11 we

see that the test would not perform optimally but would provide reasonable results

for the most extreme sample variances we expect to observe. As such, we do not

expect that there would be much reduction in performance from estimating the noise

variance.



CHAPTER 3. SPHERICITY TESTS FOR PARAMETER SELECTION 51

Figure 3.8: Effect of number of runs, O, on computational time for the bagged spheric-
ity test

Figure 3.9: Variance in the the maximum p-value parameter choice from 1000 testings
with M = 10. All parameter choices not listed were not selected.
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Figure 3.10: Effect on the choice of NW from wrongly specifying the noise process
variance. The true variance is labeled as the blue line and the theoreti-
cally acceptable choices are highlighted by the red band.

Figure 3.11: Effect on the maximum p-value for the bagged sphericity test due to
wrongly specifying the noise process variance. The true variance is la-
beled as the blue line.
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We lastly examined how both methods performed when the assumption of Gaus-

sian noise was not upheld. To do so we examined different proportions of non-

Gaussian noise sampled instead of standard Gaussian noise. We tested three alternate

distributions, a centralize t-distribution with one degree of freedom, a non-centralize

t-distribution with two degree of freedom and non-centrality parameter of one, and

a uniform distribution with range from negative three to three. As we see in Figure

3.12, the bagged test does not perform as well on all types of non-Gaussian noise as

the naive test at even the smallest proportion. We suspect this is due to the more

specific hypothesis tested in the bagged test.

Figure 3.12: Comparison of the sphericty tests’ performance under differing propor-
tions of non-Gaussian noise. The leftmost results are calculated using
standard Gaussian noise while the rightmost with the non-Gaussian dis-
tributions listed.
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3.5 Conclusions on Tests

We found that both sphericity tests were able to identify when the residuals were well

resolved and provided an appropriate choice in parameters. The tests also had the

desirable property of decreased probability of being spherical when NW was either

too small or large. While there is the concern that the naive test is not designed

to differentiate between deviance in the magnitude of variance and well resolved

residuals, it did identify similar parameters as the bagged test for simple simulations.

The bagged test did significantly out-perform the naive test at giving reasonable

results but the difference in quality of these tests was not so large that the naive test

should be discarded. The naive test did perform better in conditions of non-Gaussian

noise which may be a result of only testing for the diagonality of covariance matrix

and non the more specific hypothesis of the bagged test.

While the bagged test may be the more thorough test, it does come with draw-

backs. For reliable results the use of a reasonable (O > 20) number of runs is necessary

but this comes at the cost of increased computer time. Conversely, the robustness of

the bagged test against the misspecification of the power of the noise does not create

a problem for data sets where no information about the noise process is known. The

use of the naive test is recommended in situations where the noise power is not known

or easily estimated, non-Gaussian noise is possible, or computational considerations

need to be made. Overall both the tests did provide a reasonable choice of parameters

when no theoretical parameter values are possible.



Chapter 4

Bootstrapping the F -test

4.1 Introduction

Within many scientific fields, including health care diagnostics and wireless commu-

nications, there is a need for accurate and robust signal detection [33,141]. There are

a plethora of signal detection methods available [84], with the majority of practical

methods being designed for a specific data set or problem [16, 35, 49, 122]. With an

aim at providing a robust method for most applications, we examined the commonly

used multitaper F -test for line components (F -test). Since its development in 1982

by David J. Thomson [116], the F -test has been a commonly used test in the iden-

tification of signals within the fields of electrical engineering [83], space physics [94],

neurology [36], and many others [2, 44, 70]. While an invaluable tool for signal de-

tection in many situations, the F -test does present problems with the detection of

signals with moderate to low power-to-noise ratio. As missed detection can be costly

in communications systems as well as providing misleading evidence in scientific stud-

ies, this problem will need to be addressed to provide a robust signal detection test

55
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that can be effective in multiple applications. In an effort to lessen the issue of missed

detection and improve upon the false detection rate of the F -test, we have developed

a bootstrapping process for use in calculating the F -test statistic.

4.2 Practical Limitations of the F -test

Within the F -test we are testing the null hypothesis that there is no sinusoidal signal

present and we are examining only white noise. The test statistic is then F2,2K−2

distributed [116]. There are several problems that can arise with the practical use of

this test.

First, in the event that a signal (one or more line components) is present but the

choices of NW or K used are not appropriate to resolve the signal, we will see some

structure in the residuals. By structure we mean values that deviate considerably

from the expected standard complex normal distribution and resemble the spectrum

of the data. Since the assumption of normality in the residuals is not followed, the

χ2
2K−2 distribution in the denominator of the F -test will not be followed. As a result,

at these frequencies we will be reducing the statistic by using a larger denominator

than is expected. This mechanism can result in missed detection.

Another issue is that, under the null hypothesis we can have extreme values in

our residuals where the denominator of the statistic is quite small (compared to

the expected value of (2K − 2)SN(f)). Since the numerator is independent from

the denominator, the resulting statistic may be quite high even though no signal is

present. This will provide false detections in our spectrum and, while they occur at

the expected rates, we can deal with these unusual denominators by using re-sampling

methods.
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4.3 Testing Proceedure

To work around these two issues, we employ a bootstrap procedure on the residuals

from the F -test that is similar to the regression bootstrapping from section 2.6. Re-

membering that we are performing linear regression when computing the F -test, we

apply non-parametric bootstrapping to the regression problem [37]. In the new test

we re-sample the residuals with replacement and then estimate both Ŷk and µ̂. From

these new values we can compute a new F -statistic. We perform a reasonable num-

ber (> 20) of re-samplings and take the average at each frequency of the F -statistics

found. This average is then compared to empirical rejection regions that were found

under the null hypothesis. The re-sampled residuals F -test algorithm is,

1) the F -test in the normal fashion to obtain values for rk(f), Yk(f), and µ̂(f).

2) Re-sample the residuals with replacement to produce r̂
(m)
k (f).

3) Compute new values for Ŷ
(m)
k (f), µ̂(m)(f), r̂

(m)′
k (f), and F̂ (m)(f):

Ŷ
(m)
k (f) = µ(f)Vk(0) + r̂

(m)
k (f), (4.1)

µ̂(m)(f) =

∑K−1
k=0 V

?
k (0)Ŷ

(m)
k (f)∑K−1

k=0 |Vk(0)|2
, (4.2)

r̂
(m)′
k (f) = ŷ

(m)
k (f)− µ̂(m)(f)Vk(0), (4.3)

F̂ (m)(f) = (K − 1)
|µ̂(m)(f)|2

∑K−1
k=0 |Vk(0)|2∑K−1

k=0 |r̂
(m)′
k (f)|2

. (4.4)

4) Perform steps (2) and (3) for each m, m = 1, . . .M and take the mean of the

F -statistics found for each re-sampling:

F (f) =
1

M

M∑
m=1

F̂ (m). (4.5)
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Figure 4.1: Example of the re-sampled residuals F -test of a sinusoid at .35Hz in
Gaussian noise, NW = 4, K = 7, N = 1000.

5) Lastly check whether this value exceeds our empirical rejection value to determine

whether a signal is present.

Under H0:

F (f) ≤ φ̂2,2K−2(p), (4.6)

where φ is the empirical lower bound of the rejection region for our test with sig-

nificance level p. The values for φ̂2,2K−2(p) will be discussed in greater detail in the

following section. An example of a bootstrapped test plotted with empirical cut-offs

is shown in Figure 4.1.
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4.4 Rejection Regions and Variance of the Boot-

strapped Statistic

For use of the bootstrapped F -test as a method of signal detection, we need to

identify lower bounds, φ2,2K−2(p), for rejection regions for detection of a signal from

the statistic computed at different significance levels. There is no simple theoretical

distribution under the null hypothesis possible to produce rejection regions for our

bootstrapped statistic [22]. As a result, we identified empirical rejection regions,

φ̂2,2K−2(p), for the test statistic instead. This is accomplished by performing the

bootstrapped F -test on at least 2/p samples of Gaussian noise with variance equal to

the power of the background noise of the series. Then, after sorting the data, we are

able to get an estimate of the rejection regions for our test statistic under the null

hypothesis.

To compute φ̂2,2K−2(p) (the value of the test statistic where the empirical cumu-

lative distribution equals 1− p%), we find the value at which p% of the bootstrapped

F -test results from the Gaussian data are greater than p. Then for a significance

level p test, we use φ̂2,2K−2(p) as the lower bound on the rejection region for the

null hypothesis. We determined the cut-off point (lower bound) for several common

parameter choices and significance levels for SN = 1; these cut-off values are given in

Table 4.1.
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Table 4.1: Empirical cut-off values, φ̂2,2K−2(p), for the re-sampled F -test(SN = 1)

NW/K

Probability 3/5 3/6 4/7 4/8 5/9 5/10

.90 3.618 4.216 3.487 3.746 3.441 3.651

.95 4.582 5.487 4.377 4.813 4.582 4.627

.99 6.924 8.762 6.495 7.466 6.290 6.938

.999 10.491 14.538 9.635 11.724 9.212 10.374

.9999 14.574 22.928 12.845 16.742 12.228 14.403

Another area that is important to investigate if we plan to implement the boot-

strapped F -test in practical settings is the variance of the test statistic. We require

an estimate of the number of re-samplings needed to minimize the variability of the

bootstrapped F -statistics to avoid unnecessary computation for our testing. Using a

sinusoidal signal,

yt = .3 sin(2π.05t) + .3 sin(2π.1t) + .3 sin(2π.135t) + .3 sin(2π.2t)

+ .3 sin(2π.25t) + .3 sin(2π.305t) + .3 sin(2π.35t) +N(0, 1). (4.7)

we estimated the variance of the bootstrapped F -statistic. With 20 sets of 20 repli-

cations of 1000 samples simulated from equation 4.7, we examined the variance in

the bootstrapped F -statistic (NW = 4, K = 7) of each set for a given re-sampling

size. The choice of NW = 4 and K = 7 was found to be a reasonable choice by the

bagged sphericity test. After evaluating a range of re-sampling sizes, we found that

more than 20 re-samplings were not needed to minimize the variability. This is shown
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Figure 4.2: The effect of re-sampling size on the variability of the bootstrapped F -
statistic for signal carrying frequencies (NW = 4, K = 7).

in Figure 4.2. We also looked at the effect the number of re-samplings had on the

variability of the frequencies containing only noise. The variance of the frequencies

containing no signals leveled off around 50 re-samples to the theoretical variance of

the noise process, V ar(F2,12) = 2.16. This is shown in Figure 4.3.

Additionally we examined the effect that re-sampling size had on the magnitude of

the bootstrap statistics for signals or noise. We found no change in the magnitude of

the statistics for changes in re-sampling size in either case. From this we recommend

using a minimum of 20 re-samplings to stabilize the resulting statistic. Using a larger

number may be beneficial for data that is not as ideal as the simulated data presented

here. The obvious drawback being extra computational costs when using more re-

samplings.
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Figure 4.3: The effect of re-sampling size on the variability of the bootstrapped F -
statistic for noise frequencies (NW = 4, K = 7). The red line is the
theoretical variance, V ar(F2,12) = 2.16.

4.5 Comparison to the F -test

To show the advantages of re-sampling the residuals within the F -test, we examined

whether this test outperforms the traditional F -test. The performance metrics that

we are concerned with are the missed detection and the false detection rates. We

tested this through the use of simulated line components at varying levels of power,

determining how often either method detected the signals at set significance levels.

For this test we used parameter values NW = 4 and K = 7. By using the bagged

sphericity test from chapter 3 on the residuals of the F -test we were able to identify

that the spectrum was well resolved for those parameter values.

To compare these tests, we first started by generating 1000 samples of a signal
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from,

Yt = α sin(2π(.125t)) + zt, (4.8)

where α is the amplitude of the signal and zt ∼ N(0, 1). We then examined whether

the F -test gave a statistic higher than F (1−p, 2, 12) for the frequency bin centered on

the sinusoid’s frequency of .125Hz. p here is the probability of having a realization of

that value or higher under the null hypothesis of no signal being present. We repeated

the generation of a signal with noise 500 times for each value of α. We examined α

values ranging from 0 to .35. We performed this test for p = .05, .01.

In the same vein as the testing done on the F -test, we also perform the boot-

strapped test for all choices of α and p, 100 times using 30 re-samplings. We then

determined whether the statistic was higher than our empirical estimates of the cut-off

values at the significance level of the test.

We found, the tests performed similarly poor at very low power (α < .005) and

had near perfect rates of detection for high powered signals ((α > .25). Additionally,

the performance of the tests differed as the amplitude increased, the bootstrapped test

outperforming the traditional F -test. This effect is shown in Figures 4.4, 4.5, where

there is an increase in the detection rates of the bootstrapped test over the traditional

F -test for both the cutoff levels. We tested whether the increase in detection was

significant by considering, for each signal amplitude, each attempted detection as a

Bernoulli random variance and performing a comparison of proportions hypothesis

test [131]. The comparison of proportions test is analogous to comparing the rates,

where the sample proportions are the mean rates of detection. We defined the null

hypothesis with respect to the detection rate, Rb and Rt, as H0 : Rb − Rt ≤ 0. The
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Figure 4.4: Comparison of detection rates for the F -test methods for a range of signal
amplitudes with p = .01. p-values for H0 : Rbootstrap ≤ Rtraditional are
provided as gray bars at each frequency. When no bar is provided the
p-value is approximately zero.

test statistic being

z =
R̄b − R̄t√

R̄p(1− R̄p)(
1
Nb

+ 1
Nt

)
, (4.9)

where R̄p = Yb+Yt
Nb+Nt

, Nb, Nt are the overall number of signals tested across all runs, and

Yb, Yt are the total number of detection across all runs. Under the null hypothesis

z ∼ N(0, 1). We can then calculate a p-value for each signal amplitude to determine

if the difference is significant. We found that for all signal amplitude between .05 and

.25 there was a significant difference in the detection rates for both methods.

Another result that came out of this simulation is that we were able to test the

false detection rate of the re-sampling test when a signal is present. Using the same

cut-off values, we found that for p = .05, .01 we had false detection rates of .0416
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Figure 4.5: Comparison of detection rates for the F -test methods for a range of signal
amplitudes with p = .05. p-values for H0 : Ratebootstrap ≤ Ratetraditional
are provided as gray bars at each frequency. When no bar is provided the
p-value is approximately zero.
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and .0068. These results are lower than expected, which may be attributable to the

inclusion of residuals from frequencies where a signal was present in the re-sampling

distribution. These residuals are larger than most coming from the noise process so

they have a slight dampening effect on the statistics.

Lastly we wanted to investigate the computational cost of the bootstrapped detec-

tion method. The computational cost is dependent on two parameters, the number

of tapers used K and number of re-samplings we perform. As we increase K there is

a positive correlation to computational cost, while increases in re-sampling size did

not have a large effect. This makes sense as we have more residuals to re-sample

when we increase K. We can see the relationship these two parameters have with

computational cost in Figures 4.6, 4.7. There is a lowering in computational cost

at 38 re-samplings, this may be due to R’s internal optimization or the distribution

of processing power during the parallelization of the re-samples. The average time

for the traditional F -test was considerably less, at .034 seconds on average, with the

bootstrap method at the smallest acceptable choices for the parameters still being

around 1000 times larger in computational cost.

4.6 Conclusions on Simulations

We found that adding a bootstrapping procedure to the F -test for line components

test has improved performance over the traditional F -test for use on simulated data.

When using the bootstrapped F -test we saw improvement in both signal detection

and false detection rates for sinusoidal signals. For extremely low-powered signals, we

did not find any improvement. Both tests in this situation were unable to consistently

detect signals. The bootstrapping method did out-performed the traditional F -test
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Figure 4.6: Effect of the choice of K on computational costs for the bootstrapped
F -test.

Figure 4.7: Effect of the number of re-samplings used withing the bootstrapped F -
test the on computational costs of the method.
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for amplitudes where the detection rate was increasing. In situations where the signal

strength was strong both methods were able to identify the signals consistently.

The bootstrapped F -test provides an improvement in detection for amplitudes

when the performance is not guaranteed be poor or excellent (α ∈ (.005, .25)) In

most real world situations we are not going to have prior knowledge of the signal

amplitude for a series, and, as such, we are not likely to be able to guarantee that

the signal strength will be adequate for detection consistently with the traditional

F -test. In this situation, we would have equal or better performance from the use

of the bootstrapped F -test. The only concern being the increased computational

cost but the computational costs are still reasonably efficient. In situations where

the noise power can be estimated, we do not need to produce cutoff values for the

bootstrapped F -test and the computational costs are significantly reduced, making

this method even more applicable.

An added bonus to the bootstrapped F -test was the lower false detection rates.

This is potentially the result of having overly conservative cutoff values for our tests

due to the sample sizes used to produce them. In the event that our cutoff estimates

were too conservative, we would see a reduction in signal detection performance. Since

the bootstrapped F -test outperforms the traditional F -test, we do not concerned with

the cutoffs we have found.

The next step is to test the bootstrapping procedure on real data. We use the

bootstrapped method within the study of atrial extraction for electrocardiograms and

in Figure 6.1 we see that there is a significant increase in detection for this data. We

do not believe that in all data situations the bootstrap method with increase the

detection rate but at a minimum it will have similar detection rates to the naive
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test at a marginal increase in computational cost. We recommend that in situations

where the noise power can be easily estimated or computational costs are not a major

concern that the the bootstrapped F -test should be used.



Chapter 5

Periodic Data Reconstruction

Methods

5.1 Introduction

Often in the study of time series data we are presented with the problem of syn-

thesizing data. This synthesis may be required to interpolate missing data [39] or

to predict future values and trends [130]. In either case, there are a variety of ap-

proaches that a statistician can employ to achieve reasonable results [19,48,133,139].

The focus of this chapter is to spotlight a lesser-known synthesis method that uses

multitaper spectrum estimation and to provide a framework and tools for use on real

data problems.

The technique we will employ is to perform an inverse Fourier transform on the

complex regression coefficients that are produced when computing the F -test for

line components. This method is attributed to Dr. David Thomson, who has not

published a paper outlining this method but has used it in analysis [117] and has
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lectured on the topic. After outlining the details of how the method works, we will

provide some insight into and advancements on the basic procedure using techniques

borrowed from statistical learning theory. Analysis of simulated test data is used

to demonstrate how these methods work, explore their properties and evaluate their

performance. We also investigate two real-world data problems to demonstrate the

merit of these techniques.

The use of Thomson’s synthesis method relies on the signal detection and complex

mean values, µ̂(f), resulting from the computation of the F -test for detection of line

components, which is described in section 2.5. The choice of significance level, α,

for the F -test will greatly affect the estimates returned from Thomson’s method so

care must be taken when making this choice. We will discuss later an unsupervised

method for selecting α and the effect of the choice of α on the estimates.

5.2 Inverse Fourier Transform Signal Synthesis

Following the identification of significant frequencies within the spectrum from the

F -test (the details on how to identify signals with the F -test are discussed in section

2.5), we want to synthesize the signals at these frequencies to form an estimate of

the periodic elements of the time series without noise. The obvious way we may

attempt to do this is by determining the phase and amplitude of the significant

periodic components and modeling the time series as the sum of sinusoids with these

properties. This has been shown to have been marginally successful [94] but this can

become a cumbersome set of computations if the set of significant frequencies is large.

Thomson has proposed an alternative method that follows directly from the F -

test. By performing an inverse Fourier transform on the regression coefficients from
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the F -test, we are able to get a reasonable approximation of our original time series.

That is,

F−1(µ)(t) =

fn∑
f=−fn

ei2πft
∑K−1

k=0 V
?
k (0)Yk(f)∑K−1

k=0 |Vk(0)|2
(5.1)

=
1∑K−1

k=0 |Vk(0)|2

fn∑
f=−fn

K−1∑
k=0

ei2πftV ?
k (0)Yk(f) (5.2)

=
1∑K−1

k=0 |Vk(0)|2

K−1∑
k=0

V ?
k (0)

fn∑
f=−fn

ei2πftYk(f). (5.3)

Noting that the inner summation is the discrete inverse Fourier transform of Yk(f)

and Yk(f) is defined as the Fourier transform of ν
(k)
t xt, we can use the inversion

theorem for Fourier transforms to replace the inner summation:

F−1(µ)(t) =
1∑K−1

k=0 |Vk(0)|2

K−1∑
k=0

V ?
k (0)ν

(k)
t (Nxt) =

N
∑K−1

k=0 V
?
k (0)ν

(k)
t∑K−1

k=0 |Vk(0)|2
xt. (5.4)

Inverting this weighting we can get our time series,

xt =

∑K−1
k=0 |Vk(0)|2

N
∑K−1

k=0 V
?
k (0)ν

(k)
t

F−1(µ)(t). (5.5)

Now evaluating the fraction we have,
N−1∑
k=0

V ?
k (0)ν

(k)
t = e−i2π(0)t (5.6)

N−1∑
k=0

V ?
k (0)ν

(k)
t = 1 (5.7)

N−1∑
t=0

N−1∑
k=0

V ?
k (0)ν

(k)
t =

N−1∑
t=0

1 (5.8)

N−1∑
k=0

V ?
k (0)

N−1∑
t=0

ν
(k)
t = N (5.9)

N−1∑
k=0

V ?
k (0)

N−1∑
t=0

e−i2π(0)tν
(k)
t = N (5.10)
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N−1∑
k=0

V 2
k (0) = N (5.11)

|
N−1∑
k=0

V 2
k (0) | =| N | (5.12)

N−1∑
k=0

| V 2
k (0) | = N (5.13)

The relationship in equation 5.6 is noted in Thomson’s paper on Rihaczek distribu-

tions [119]. These relationships hold approximately when summing for k from 0 to

2NW .

Inserting the results from equations 5.7, 5.13 into equation 5.5 we get,

xt ≈
N(1)

N
F−1(µ)(t) (5.14)

≈ F−1(µ)(t). (5.15)

for K ≥ 2NW .

Since we do not use K > 2NW , we will have some truncation error and in cases

with K much smaller that 2NW , we will need to include a truncation coefficient of

N(1−
∑N−1

k=K V ?
k (0)ν

(k)
t )

N−
∑N−1

k=K |Vk(0)|2
. Several examples of truncation corrections are found in figure 5.2.

We noticed that there is significant truncation bias at the edges of our intervals and

an ripples that persists through the estimates. We found that the truncation bias was

proportional to the length of the data. By that, we mean the truncation correction

at x% into the series was the same across changes in sample size. The choice of NW

and K were found to have an effect on the truncation correction. Smaller values of

NW or K had more samples with considerable bias. The truncation correction values

for the middle portion of the time series leveled off for most series and were slightly

larger than one on average.
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Figure 5.1: Log-scaled plot of the truncation coefficients for a variety of parameter
choices with N = 100. The first 50 points are plotted while the latter 50
points mirror them.

For choices of NW that are near two it may be best to use the truncation cor-

rection, with NW nearer to 10 we found no truncation correction was needed. It is

also important to think of the two applications we plan to use this method for. For

interpolation, if we have the gap in the middle portion we are not likely to need the

truncation correction for reasonable performance. Alternatively there may be issues

at the boundaries of the series and we will explore their affect on performance later

on in this chapter.

Now we do not have the true values for our regression coefficients, µ. We have

estimates that are found from the F -test instead. Using these estimates, µ̂, we can

get an estimate of our time series from equation 5.15:

x̂t ≈ F−1(µ̂)(t). (5.16)
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From this computation we can return an estimate of our time series based on the

regression coefficients found within the F -test, but it is unrealistic to expect that a

periodic component will be found at each frequency. Instead of using the full set of

coefficients, we will use a subset that is significant under the F -test,

µ̂α(f) =


µ̂(f), F̂ (f) > F(2NW−1,2,α).

0, otherwise.

(5.17)

Now we can synthesize an estimate of the significant periodic parts within our time

series by replacing µ̂(f) with µ̂α(f) in equation 5.16:

x̂t,α ≈ F−1(µ̂α)(t). (5.18)

5.3 Interpolation and Prediction

The preceding method allows us to reproduce the periodic components within a time

series for times where we have observations. This may be useful as a de-noising

process for data clean-up, but many problems require interpolation or prediction to

be made from time series data. Luckily, we can still use the same method with a

small variation to solve these problems. The introduction of some proxy data in the

time series will allow us to return an estimate of the periodic components operating

at these unknown intervals.

For prediction of future data, we zero-pad the time series the desired number of

data points. We then return the estimate of the significant periodic components.

The zero-padded points within the returned estimate will now contain the periodic

components, giving us a prediction estimate. The added bonus from zero-padding
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is that we improve the frequency granularity, which will allow for better estimation

of the significant frequencies. It is common practice to zero-pad to improve the

resolution of the frequencies for analysis; therefore, in many cases there is negligible

extra cost to achieve a prediction from the periodic components. To address the issue

of truncation bias it is best to zero-pad the data so that the points we aim to predict

are not near the end of the resulting estimated series. In most practical situations we

zero-pad more than double the length of data and the resulting series has negligible

truncation bias for the predicted points of interest.

To interpolate the data, we will develop some approximation of the missing data

first and then perform the same method as before. The most common method is to

linearly interpolate the gap in the data, as this will not introduce any new periodic

trends, a problem that may occur when using a spline-based approximation [101]. A

drawback of using a linear interpolation is the reduced high-frequency power that will

be found in the spectrum. This will bias the interpolation by reducing the significance

of the higher-frequency components. As this bias will reduce the propensity for spikes

in the interpolation, this choice is reasonable for most scenarios. Another potential

problem occurs when the gap edge points are extreme values of the time series process.

In this situation, the interpolation will have either an incorrect central tendency or a

distinct linear trend that is not found in the actual process. This problem is magnified

for larger gaps, where the initial interpolation will have more effect on the resulting

synthesis. In situations where the gap edge values are extreme or the gap is large, we

recommend using the mean of the series instead of a linear interpolation.
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5.4 Significance Level Determination (Finding α)

When synthesizing data from a time series, we need to make a choice for the sig-

nificance level of the periodic components to be used. This choice can influence

significantly the estimate we produce from the data. If we set the significance level

too low we will accept more frequencies, producing a more turbulent estimate, which

can cause undesirable spikes in the data. Likewise, if we set the significance level too

high, the estimate will miss much of the periodic structure in the time series.

Finding the optimal significance level is dependent on the data as well as the

problem at hand. As interpolation and prediction are two separate problems with

differing methods and end goals, it is reasonable to assume that the optimal signifi-

cance level will not be always the same. To identify the best choice for both cases,

we will approach them separately.

For an interpolation problem, we are aiming to fill in a section of missing data

with the information contained in the data on either side. It would therefore make

sense to choose the optimal significance level for the data surrounding the gap. It

also makes sense that the best choice would be chosen with respect to the gap size we

plan to interpolate. To meet these aims we propose a cross-validation–based method,

in which the data on each side of the gap is divided into bins the size of the gap and

the now pseudo-missing data is interpolated.

We denote the data on either side of the gap as Xr(t) &Xl(t) and the size of the

gap as g. For a set significance level α, we do the following:

1. Starting with Xr(t), divide the data into bins of size g. In the likely event that

the length of Xr(t) does not evenly divide into bins of size g, truncate Xr(t) by

discarding the data farthest from the gap.
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2. Replace one bin, Xr((g− 1)i+ 1) . . . Xr(gi), with a simple interpolation (linear

or mean).

3. Compute an F -test and determine the significant frequencies.

4. Use Thomson’s method to produce an estimate of the data, X̂r(t)

5. Calculate the mean squared error of the estimate to the removed bin, MSEr,i(α) =∑gi
t=(g−1)i+1

(Xr(t)−X̂r(t))2

g
.

6. Repeat steps 2 through 5 for each bin excluding the first and last.

7. Find the mean of the mean squared errors across all interpolated bins, MSEr(α).

We now repeat this process for Xl(t) and take the average across both sides to obtain

an overall measurement of interpolation error, MSE(α). This process is computed

for a range of values of α with the minimum error producing level chosen, αopt =

argmin
α

MSE(α).

If the gap in the data is larger than the size of the two adjacent portions, this

method will not work. If that is the case, we recommend either using the prediction

method below or, if there are multiple gaps, starting with the smallest gap and then

using this interpolated data as real data for larger gaps, as this will ensure that you

have the largest data series possible for the larger gaps.

For prediction problems, our main goal is to ensure the optimal set of periodic

components for predicting an interval of new data. The two important parameters

that will affect the significance level chosen are the length of the interval we want

to predict, np, and the length of the data we intend to use to create this prediction,

nt. We assume np < nt as it is considered unwise to attempt to predict a larger time

series than the sample used for modeling.
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To develop a value of the prediction error associated with each significance level,

we split all of the available data into overlapping bins of size g = np + nt. The

amount of overlap required is dependent on the amount of data we have; ideally, we

would have a minimum of 10 bins. We now follow a process similar to that used for

interpolation, with the main difference being that for each bin we replace the last np

data points with zeros instead of using a simple interpolation.

For a data set xt and a set significance level α, we do the following:

1. Split the data into overlapping bins of size g = np + nt.

2. For bin i, xt,i, replace the last np data points with zeros.

3. Compute an F -test and determine the significant frequencies.

4. Use Thomson’s method to produce an estimate of the data, x̂t,i.

5. Calculate the mean squared error of the estimate to the predicted times, PSEl,i(α) =∑g
t=nt+1(xt,i−x̂t,i)2

np
.

6. Repeat steps 2 through 4 but now replace the first np data points with zeros

and calculate the mean squared error of the estimate to the predicted times,

PSEr,i(α) =
∑np

t=1(xt,i−x̂t,i)2
np

.

7. Find the mean error across both predictions for bin i, PSEi(α) =
PSEr,i(α)+PSEl,i(α)

2
.

8. Find the mean of the mean prediction errors across all bins, PSE(α).

This will provide a metric for evaluating the performance of the prediction model

for a given prediction size and training interval. The assumption of stationarity is

vital to the use of multiple bins, with the expectation that the prediction error of
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times further away from the prediction are as useful as the closest times. If there is

some concern about a gradual change in the distribution of the process, the use of a

weighted mean with greater weights for bins with more current times is recommended.

If there is a large shift in the distribution of the process, we can use only the most

current contiguous data that is assumed to be stationary. If the intention is to use

all of the data for the prediction, nt = n, it is advantageous to set as large a size nt

for selecting α as possible while maintaining 10 bins with no more that 50% overlap

to ensure that there is no over-training in the significance level chosen.

Additionally, we can potentially improve our reconstruction by implementing the

bootstrapped F -test to identify the significant frequencies in the time series. The

bootstrapped F -statistic’s trait of being greater than the simple F -statistic for fre-

quencies with true signals and smaller for frequencies containing noise can help to

improve the likelihood that for the ideal cutoff we select only true signals. There are

downsides to implementing the bootstrapped F -test. First, the computational costs

are higher, and this, when implemented with several of the other methods, can in-

crease the computational costs exponentially. Also, we are more likely to have spillage

of the F -statistic to neighbouring bins. This issue makes it difficult to isolate key

frequencies in some situations. Signal spillage within the bootstrapped F -test can

be large, particularly in situations of extremely high signal-to-noise power. We will

not explore the use of the bootstrapped F -test further in this section but see it as a

“Cadillac” extension that could be used.
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5.5 Boosting Residual Signals

In most real data situations, not all of the existing periodic components will be

modeled in the estimated data. This will result in temporally correlated residuals.

If we were able to model the residuals with the same method as the original model,

we may be able to improve our synthesized data. To encapsulate this extra periodic

information, we use a gradient boosting method. By fitting periodic components to

the residuals using Thomson’s method, we can identify missing periodic components

of our process. We then optimize our model with the new components by finding

the minimum squared error for the linear combination of the old model and residuals

Mi−1(t) +γiFi(t), where Mi(t) =
∑i

j=1 γjFj(t) and Fj(t) is the model on the (j− 1)th

residual series. F1(t) is the original model found from the data. When concerned

with over-fitting, we can add a cross-validation step in here and choose the γ that

minimizes the mean of the cross-validated squared errors.

We then check whether this new model is significant at a preset level, αboost,

compared to our old model. To do so, we perform an F -test to compare the two

models. Under the null hypothesis that there is no significant improvement in the fit

of the boosted model to the data, we would have our statistic,

F =

SSEold−SSEnew
#NewFrequencies

SSEnew
nt−#TotalFrequencies

, (5.19)

which should follow an F(#NewFrequencies,nt−#TotalFrequencies) distribution, where nt is

the number of data points used to make the interpolation or prediction.

The algorithm is as follows:

1. For a time series, yt, we find the optimum periodic estimate, ŷt, as described

previously.
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2. We next find the residuals for these estimates, rt = yt − ŷt.

3. With these residuals we test to see whether the model is significant using the

F -statistic described in equation 5.19. If the p-value of our F -statistic is smaller

than αboost, we accept these estimates as our non-boosted model for the time

series.

4. Next, we treat the residuals, rt, as a new time series and find the optimum

periodic estimate, r̂t.

5. With this new estimate we now make a “greedy” model by finding argmin
γ

∑
t∈T (yt−

(ŷt+γr̂t))
2, where T is the set of times we are using to create the estimate with.

If there is concern about over-fitting, in this step use we cross-validation to

identify the optimal γ.

6. We now define our new estimates of this greedy model, ŷ′t = ŷt + γr̂t, and test

for significance with an F -test like we did in step 3.

7. If the model is significant, we repeat steps 4 − 6 with the new residuals, r′t =

yt − ŷ′t, as the time series.

8. We continue repeating steps 4− 7 with the new residuals until the model is not

considered significant under the F -test in step 6. At this point we consider the

model from the previous iteration as our final model.

5.6 Bootstrapped Signal Synthesis

So far in our data synthesis we have neglected the effects of randomness on our esti-

mates. For each data point we assume that there is a set of periodic components and
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a noise term. This noise term will affect our estimates of the periodic components and

can cause reduced performance for interpolation or prediction. There are several ways

to attempt the deal with this issue. We can use noise removal procedures by filtering

the data or by using data transformations such as principal components analysis [108].

Sadly, for many types of data these procedures can be impossible to implement or

detrimental to the quality of the data [126]. In an effort to produce a more meaningful

estimate of the missing data, we will use a non-parametric bootstrapping method to

estimate the role noise plays.

We start by assuming that our time series data is sampled from a process made

of periodic components and a noise term, xt =
∑n

i=1 Pi(t) + ζ(t). As well, we assume

that the samples are uncorrelated. If the samples are correlated but no new periodic

components can be removed by using boosting on the residuals, it may be best to

model the data with the periodic components, an ARMA process and a noise com-

ponent. To gain an estimate of the distribution the synthesized data will follow, we

need to model the noise process, ζ(t). To do so, we estimate the periodic components

using Thomson’s method and re-sample the residuals, rt = xt − x̂t.

We now introduce noise into our initial estimates of the missing data by drawing

samples from the residuals for the data points we wish to synthesize. By doing this,

we emulate the noise contribution to the periodic estimates for those times. For

interpolation, we would add noise samples to the simple interpolation.

This process is more tricky with prediction, as it is not possible to add the residuals

directly to the missing data. If we were to add the residuals to the zero-padded

section to create a scheme similar to that for interpolation, we would create a large

amount of bias in our predictions. This increased bias is due to our method of trying
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to model the non-existent sinusoidal components in our replacements for the zero-

padding. To work around this, we propose sampling the residuals resulting from our

existing reconstruction with replacement, adding them to the periodic reconstruction,

producing a new data set, and then computing the new periodic estimates.

By repeating this process of drawing noise samples and obtaining periodic esti-

mates, we produce a set of random samples for each estimated time. From these

samples we can derive properties of the distribution for the synthesized data. This

gives us an estimate of the mean value for each time as well as confidence intervals.

Along with the confidence intervals we get for our periodic estimates from the

bootstrapping, we can also estimate the overall confidence intervals for the synthetic

data by modeling the residuals by a normal distribution and adding the confidence

intervals for the noise and periodic terms together. With this, we can give a distinct

interval at each time that we expect the missing data to have been found.

5.7 Data Analysis and Comparison

We decided that to verify the merit of these techniques, we should first evaluate their

performance on simulated data made of sinusoids in noise and then test the methods

on common data sets. We are interested in knowing how well the optimized Thomson

inverse estimates synthesize unknown data and under what conditions these methods

perform best.

We next tested the data on two real-world applications: filling a gap in weather

data and predicting the commodities market price of coffee. To determine how well

these methods work on non-ideal data where all of our assumptions may not hold,

we decided to check the performance of each method on a realistic problem. We



CHAPTER 5. PERIODIC DATA RECONSTRUCTION METHODS 85

examined weather data for the city of New York and tried to interpolate a large gap

that could result from a weather station going down. After that, we looked at the

daily price of coffee on the commodities market and checked to see how well we were

able to predict the price a year into the future.

5.7.1 Simulated Data Testing

First we tested the methods with an artificial time series containing seven sinusoids

in Gaussian noise with signal amplitude varying from .15 to .3:

yt = .2 sin(2π.2t) + .3 sin(2π.35t) + .25 sin(2π.135t) + .3 sin(2π.305t)

+ .28 sin(2π.25t) + .15 sin(2π.05t) + .27 sin(2π.1t) +N(0, 1). (5.20)

Wanting to see how Thomson’s method and the extensions we proposed worked on

a well-behaved stationary series, we attempted to interpolate and predict several

realizations from the series described in equation 5.20. We began with an example

of interpolation and prediction of a series of 1, 200 points from equation 5.20. For

interpolation we wanted to estimate the middle 100 points of the series, while for

prediction we attempted to predict the final 100 points.

The first step in both methods was to determine a reasonable choice for the pa-

rameters NW and K. For this we used the ná’ive sphericity test and found NW = 5,

K = 5 was optimal. We use the näıve test because we plan to run a large number of

simulations and the increased computational cost would introduce significant delays

to this analysis. We did not expect that this choice would cause a significant issue. A

discussion of the merits and pitfalls of using the näıve method, as well as the details

on its procedure can be found in chapter 3.

For interpolation, we started by determining the optimal cutoff value by finding
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Figure 5.2: Cross-validated mean squared error of varying significance levels for in-
terpolation of 100 points of sinusoidal data.

the minimum mean squared error across the range from .5 to 1. Shown in Figure 5.7.1,

the minimum value was found to be α = .987. We noticed that the mean squared

error behaves as we expected for this series, with low cutoff values, between .5 and

.9, having poor performance due to the inclusion of many falsely detected periodic

components. The performance of the estimates improved as we continued to remove

needless frequencies, minimizing on the optimal set, but as we continued to remove

more frequencies the performance diminishes due to the removed significant periodic

components.

Now with the optimal cutoff found to be α = .987, we performed our interpolation.

The interpolation, as shown in Figure 5.7.1, appeared to perform well in the gap, with

less variance than the true data, as we expected with the noise levels present.

Attempting to boost the residuals, we found that there were some residual periodic
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Figure 5.3: Interpolation of 100 points of sinusoidal data.

components unaccounted for. On the first iteration we added several frequencies and

optimized with a greedy model with γ1 = .85. This model, shown in Figure 5.7.1,

was significant at αboost = .01. Repeating this process for the residuals from the new

reconstruction, r′t = yt − (ŷt + γ1r̂t), we found the next model not to be significant.

We therefor selected the previous model, ŷ′t = ŷt + .85r̂t, as the boosted model. This

produced a slight improvement at picking up the more extreme-valued but slower

periodic trend existing in the data.

Finally, sampling the residuals from the estimated series to add to the mean

interpolation used gave us an estimate of the confidence intervals for the periodic

error that may have existed in the interpolation. Using the residuals to model the

assumed Gaussian noise for our series, we also produced overall confidence intervals

for the interpolated section. For this series, the bootstrapped confidence intervals on

the periodic interpolation, which we plotted in Figure 5.7.1, were extremely small,
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Figure 5.4: Boosted interpolation of 100 points of sinusoidal data.

as this data was strongly periodic with little residual structure or noise interference.

The overall confidence bounds appeared appropriate, using 1 − 1
gapsize

= .01 as our

significance level, we saw the range match that of the surrounding data.

Comparing the confidence region of the interpolation to the data removed from

the series originally, in Figure 5.7.1, we saw that no points exceeded our bounds. In

addition, we saw in Figure 5.7.1 that the true periodic trends without noise tracked

very closely to the confidence intervals of our periodic estimates. The periodic part

of our data barely crossed the bounds on one occasion. This is as we expected, and

the size of the departure was minuscule.

In Figure 5.7.1, we examined the original simple periodic reconstruction to see how

well it fit within the confidence bounds that tracked the periodic components well. We

saw that it performed considerably worse, rarely maintaining a similar shape. This

showed that the use of boosting and bootstrapping helped to improve the estimates
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Figure 5.5: Confidence intervals for interpolation of 100 points of sinusoidal data.

Figure 5.6: Comparison of sinusoidal data with noise to α = .01 overall interpolation
confidence intervals
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Figure 5.7: Comparison of sinusoidal data without noise to α = .01 periodic recon-
struction interpolation confidence intervals.

we provided. For this fabricated data the periodic reconstruction performed quite

well and gave a useful representation of what could be found in the data gap.

Now we attempted to predict 100 data points in the future from the same set of

sinusoids and noise. First we saw in Figure 5.7.1 that the optimal α is larger than

before, at αopt = .997. After obtaining the optimal cutoff we made our prediction

which we plotted in Figure 5.7.1. The prediction tracked well with the data and

appeared to have fewer periodic terms than the interpolation. This is in line with

what we expected for prediction, being more conservative than interpolation.

When modeling the residuals we found several more significant frequencies and

γ1 = .94 as the parameter for our greedy model. This model was not significant for

αboost = .01. Therefore, we concluded that the original model was ideal. This may

have been due to the more conservative nature of optimizing αboost for prediction.

Sampling repeatedly from the residuals from our original prediction, adding them

back to the reconstruction and creating periodic reconstructions of the resulting time
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Figure 5.8: Comparison of the simple periodic reconstruction of sinusoidal data to
α = .01 periodic reconstruction interpolation confidence intervals.

Figure 5.9: Cross-validated mean squared error of varying significance levels for pre-
dicting 100 points of sinusoidal data.
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Figure 5.10: Prediction of 100 points of sinusoidal data.

series, gave us the distribution for our prediction at each time. Finding the .01

significance level confidence intervals for the periodic reconstruction with and without

noise, we saw that they are slightly wider than those for interpolation and followed

the data well. This is shown in 5.7.1.

In Figure 5.7.1 we looked at the confidence bounds of the prediction when com-

pared to the true data, our prediction interval with noise contained all of the data

points. As for the periodic components only, plotted in Figure 5.7.1, we see perfor-

mance similar to that of our interpolation, with four occasions where the sinusoids

fall outside the confidence region. Overall, the periodic estimates’ bounds followed

the structure of the signal well.

Following these two examples, we examined what performance gains were ob-

tained by using the advanced methods. Using the mean squared error as the metric

for performance, we performed repeated periodic reconstructions of sinusoidal data

with Gaussian noise. We examined the mean squared errors of 500 repetitions of
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Figure 5.11: Confidence intervals for prediction of 100 points of sinusoidal data.

Figure 5.12: Comparison of sinusoidal data with noise to α = .01 overall prediction
confidence intervals.
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Figure 5.13: Comparison of sinusoidal data without noise to α = .01 periodic recon-
struction prediction confidence intervals.

interpolation of 100 points in the middle of 1, 200 point series for each method. The

four methods used were Thomson’s method with (1) optimized α, (2) optimized

α and boosted residuals (significance level .01), (3) optimized α and bootstrapped

modeling (60 runs), and (4) optimized α, boosted residuals (significance level .01)

and bootstrapping (60 runs). We found that bootstrapping was the most significant

improvement over simply optimizing for α. In Table 5.1 we saw that the boosting

method offered no significant reduction in mean squared error when we tested with

a one-sided t-test. This may be due to the ideal properties of the sinusoidal data.

As we noted, the boosting algorithm works to model signals missed in the original

reconstruction. In real-world situations, the data will not be as simple and easy to

model. In this situation, the boosting method does have use.

We also examined the computational cost of each method. To do so, we measured

the time to run each iteration from our performance testing to determine the average

time for each method. The average times are give in Table 5.2; as we suspected, the
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Table 5.1: t-test evaluating H0 : µA > µB for the mean squared errors of our interpo-
lation methods.

Method B

Method A Optimized α Boosted Bootstrap Boosted bootstrap

Optimized α µ̂ = 1.186223 t = 0.0889 t = 3.6343 t = 4.0299
n = 500 p = 0.4646 p = 0.000159 p = 3.379× 10−05

Boosted µ̂ = 1.185132 t = 3.4026 t = 3.7766
n = 500 p = 0.0003654 p = 9.066× 10−5

Bootstrap µ̂ = 1.132029 t = 0.3009
n = 200 p= 0.3818

Boosted bootstrap µ̂ = 1.126720
n = 200

bootstrapping was the most costly process. When used in conjunction with boosting,

the bootstrap process was considerably slower than the other methods. The boosting

was not, on average, more that 15 seconds slower than simply finding the optimal

αopt. This can be attributed to only one iteration of residuals being reconstructed the

majority of times.

Table 5.2: Average computational costs of each interpolation method.

Optimized α Boosted Bootstrap Boosted bootstrap

Time (seconds) 22.12 35.54 546.77 1, 678.77

Prediction is a very similar problem to interpolation for each of the four methods,

with the difference being that the choice of α is more conservative. We performed the

same testing on each method for prediction and received similar results. The boosting

method had a more significant improvement over just optimizing for α. This may be
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because of the larger number of runs we were able to perform for prediction due to

the lower computational costs. We still found that there was minimal improvement

from use of both boosting and bootstrapping. The full analysis for each method’s

performance is given in Table 5.3.

In addition to modeling performance, we also examined the computational costs

for the performance methods. Examining the results in Table 5.4, we still find that

boosting was marginally more computationally expensive than just optimizing for α

and that bootstrapping resulted in a considerable increase in cost. The boosting and

bootstrapping case was still the most expensive method. We do note that the costs

were two to three times less expensive than those for interpolation. This could be due

to the the lower number of bins used within and the single instance of cross-validation

for prediction.

Table 5.3: t-test evaluating H0 : µA > µB for the mean squared errors of our predic-
tion methods.

Method B

Method A Optimized α Boosted Bootstrap Boosted bootstrap

Optimized α µ̂ = 1.267972 t = 1.6324 t = 3.6343 t = 1.8882
n = 2000 p = 0.05157 p = 3.655× 10−05 p = 0.04135

Boosted µ̂ = 1.251046 t = 2.2646 t = 1.3733
n = 500 p = 0.01201 p = 0.09579

Bootstrap µ̂ = 1.216298 t = 0.4127
n = 500 p = 0.3428

Boosted bootstrap µ̂ = 1.200918
n = 200

Another pair of aspects that may affect the performance of our methods is gap size
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Table 5.4: Average computational costs of each prediction method.

Optimized α Boosted Bootstrap Boosted bootstrap

Time (seconds) 6.65 15.48 288.77 586.6

and signal strength. We ran 20 simulation of interpolating and predicting sinusoidal

data for varying levels of signal strength and gap sizes. The results are presented in

Figures 5.14, 5.15, 5.16 and 5.17. We found that increased signal strength improved

the performance of the reconstructions. This was expected, as the F -statistics are

affected by signal strength. We saw that gap size had no effect. Since the data is

stationary, the increased gap size will not affect the estimate. With nonstationary

data or more complex signals, this may not be the case.

Figure 5.14: Box plots for the effect of gap size on the interpolation error of sinusoidal
data with signal to noise level of .5.
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Figure 5.15: Box plots for the effect of signal strength on the interpolation error of
sinusoidal data for interpolation of 100 data points.

Figure 5.16: Box plots for the effect of gap size on the prediction error of sinusoidal
data with signal to noise level of .5.
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Figure 5.17: Box plots for the effect of signal strength on the prediction error of
sinusoidal data for prediction of 100 data points.

5.7.2 Real-World Examples

To test these methods, we examined two real-world data sets and the potential prob-

lems that could arise. First, we examined how well we could interpolate monthly

averaged New York temperature data. We removed 100 samples and attempted to

interpolate them. We saw that from the boosted bootstrapped confidence intervals in

Figure 5.18 there was a strong periodic trend that was maintained by our estimates.

Then, looking at how well our 1 − 1/n = .01 significance level confidence intervals

performed in Figure 5.19, we saw that there was only one instance where the data falls

outside the limits. This met our expectation for random chance from the uncertainty

in our estimates and noise.

We next attempted to predict a year into the future for the coffee commodity
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Figure 5.18: α = .01 Confidence intervals for interpolation of 100 months of temper-
ature data.

Figure 5.19: Comparison of temperature to α = .01 periodic reconstruction interpo-
lation confidence intervals.
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Figure 5.20: α = .01 Confidence intervals for prediction of one year of coffee prices.

price using daily data. Examining the prediction intervals in Figure 5.20 we expected

that the price of coffee would increase over the next half-year. We also noticed that

the lower confidence bounds with noise are a considerably lower value than the values

we had found in the data but the upper bound does not cover the range of the data.

This may have been due to the residuals being from a skewed distribution. It may

have been better to use a non-parametric estimate of the noise confidence intervals

or to select a more appropriate distribution to model. We found in Figure 5.21 that

the confidence intervals contain the actual data at all points, with the data reaching

the limits on two occasions. This demonstrated that our prediction intervals were

reasonable, although we may have been able to generate prediction intervals with

greater performance by using another model for the residuals.
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Figure 5.21: Comparison of the true coffee prices to the α = .01 periodic reconstruc-
tion prediction confidence intervals.

5.8 Conclusions on Techniques

We have shown that these methods work well under the assumption of a time series

constructed from independent noise and periodic signals. Prediction and interpolation

perform similarly with slightly more conservative estimates made for prediction, as

we would expect. The use of bootstrapping aids in improving the performance of

Thomson’s method but does so at an increased computational cost. The boosting

method was not shown to create a significant improvement over simply finding the

optimal α when interpolating a simple sinusoidal data series. For prediction, there

was a significant improvement, but the difference in significance may be due to sample

size. However, the computational cost of boosting was not nearly as large as that of

bootstrapping, so boosting is the more practical method.

For use on real data projects, we believe that the development of the confidence
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intervals on these reconstructions improves our ability to report on the processes gov-

erning the data. These confidence intervals followed the data well and encompassed

the randomness present in the process. The mean of the bootstrapped reconstructions

was also a significant improvement on simply finding the optimal α. We recommend

using boosting on the original reconstructions even though few gains were demon-

strated. Our justification for this is that the computational cost is minimal if you

are only intending to perform a single reconstruction and is more robust at modeling

the increased complexity of real data. If you were to choose one method only, we

would recommend bootstrapping. With bootstrapping, you gain more information to

report on your reconstruction and a significantly better estimate. The only downside

is the considerable computational cost associated with bootstrapping. We would not

recommend both bootstrapping and boosting to data, as, while this does give the

best estimate of the series, the computational cost is far too high to justify its use.



Chapter 6

Extracating Atrial Signals from

ECG Time Series

6.1 Introduction

Analysis of atrial rhythm is paramount in the identification, treatment and long-

term management of atrial fibrillation [6, 108]. The main tool in the analysis of

heart rhythms is the electrocardiogram (ECG), a machine that collects a set of time

series measuring the electrical pulses made by the cardiac tissue observed on the

skin of a patient [78]. There are commonly 12 leads observing the cardiac current

simultaneously. For this reason, much of the methodology developed for evaluating

ECG data is based on multiple leads being available [17].

Alternatively, in some instances where the 12 leads cannot be attached because

of physical limitations or if the patient is unwilling to deal with the discomfort of the

process, one or two leads are used for an ECG [91]. In most of these situations, only

the first lead is reliable because of spatial changes that occur during the recording

104
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process that can affect the signals recorded by the other leads [110]. As well, there

is a larger concentration of atrial power that exists within the first lead [82]. In this

chapter, we aim to produce a procedure that can perform extraction analysis similar

to 12-lead methods while using only one ECG lead.

6.2 The Problem

Atrial fibrillation is a common abnormality in the heart’s rhythm that can cause seri-

ous health problems, such as strokes and congestive heart failure [6]. The extraction

of the atrial components of the heart’s electrical pulses can help to identify atrial

fibrillation and manage it as a patient undergoes treatment [95]. There are a number

of common approaches to extract the atrial components from a raw ECG time series,

filtering, basis expansion, and matched subtraction being some of the more common

methods [15] [110].

The extraction of atrial signals can be difficult because of the ventricular pulses

that also exist in the ECG data [108]. The relative amplitude of the atrial component

is much smaller than that of the ventricular, and this can cause masking of the atrial

processes in the time domain [82]. In addition, the noise generated by the system and

methods used to perform the ECG can also be larger in amplitude than the atrial

signal [82]. Another issue that arises is that there is overlap in common frequencies

found in both the atrial and ventricular processes, and this overlap is not identical for

all patients. The differing overlap in frequencies makes the use of simple band-pass

filters unacceptable for extraction [113].

There are, however, several attributes of the atrial processes that we can use

to identify and extract their signals. Our method is a version of a common basis
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expansion approach, wherein we evaluate the principle components of a matrix of

sample heartbeats from the ECG and determine which components are attributable

to the atrial activity in the signal [108].

6.3 Advanced Principal Components Analysis

The advanced principal components analysis (APCA) method is broken down into five

parts: (1) preliminary data cleanup, (2) beat extraction, (3) principal components

expansion, (4) atrial component detection, and (5) component recombination. To

process the data for use within our analysis, we begin by removing the mean from the

data and using two six-point Butterworth filters [13] to create a band-pass filter for the

region f ∈ [2Hz, 20Hz]. We now have a series in which the majority of the heartbeat

power, 60− 120 beats per minute for a person at rest, is removed and the time series

is approximately stationary, allowing for the use of spectrum estimation [113].

We next transform the time series into a matrix of heartbeats by centering equal-

length sections of the series on sequential peaks of the QRS process in the heart

and filling them into the rows of a matrix. The QRS process is the middle three

deflections in voltage visible in an ECG for a healthy heartbeat. They are the result

of the depolarization of the right and left ventricles. It is important that the beats are

aligned, because if they are not, when we perform spectrum analysis on the principal

components, there will be phasing problems. After creating the heartbeat matrix, we

perform principal components analysis to give us an orthogonal set of components

that we can evaluate for atrial signal properties.

To determine whether a principal component contains an atrial component, we

use three features of the principal component: kurtosis, the eigenvalues, and the
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spectrum in the range of [5Hz, 15Hz]. The first feature, kurtosis, is a strong indicator

of ventricular signals. Because of the high power of the ventricle signal, the kurtosis

of components that contain the ventricle process will be larger than those that lack

it [41]. To utilize this feature, we use Ward’s hierarchical clustering [129], which is

described in section 2.9.1, to separate the components into two groupings based on

Euclidean distance between kurtosis values. The cluster of components with lower-

valued kurtosis will continue to be evaluated as possible atrial components.

We next evaluate the eigenvalue structure of the components. Again, from the

high-powered nature of the ventricular signal, we expect that the components that

contain the majority of the ventricular power will have larger eigenvalues [140]. Fol-

lowing this logic, it is common to classify the component with the highest eigenvalue

as containing the QRS process and being produced by ventricular heart activity. It

is possible though for the QRS process to split across several components and, for

that reason, we use two stages of hierarchical clustering to first identify the large-

valued eigenvalues that we classify as ventricular and then identify possible noise

components.

In the first stage we split the components using Ward’s method on the eigenvalues

from the principal components analysis. From this we will have a small group with

large eigenvalues, these are ventricular, and we will have a larger set of components

that could be generated by noise or atrial processes. For the remaining unclassified

components, those attributable to noise will have eigenvalues near zero. By using a

second round of clustering on the natural logarithm of the eigenvalues, we can easily

separate the noise components from the potentially atrial ones.
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The final differentiation needed is to ensure that we do not misclassify moderate-

powered noise components as atrial. We do this by determining the presence of signals

within the [5Hz, 15Hz] range. Noise components will not have any signals present.

Additionally, components with signals outside this theoretical range for atrial activity

will also be identified. This provides robustness against the detection of systematic

artifacts with signals elsewhere in the spectrum. To test for the presence of signals

in each component, we use the bootstrapped multitaper F -test. This test is chosen

for its ability to identify signals well at low power and with limited sample sizes, as

we showed in Chapter 4. We can see in Figure 6.1 that the bootstrapped method is

able to identify signals within the components that the traditional method cannot.
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Figure 6.1: Comparison of standard and bootstrapped F -test methods on ECG ex-
traction data.

From these three properties, we are able to classify each component. We then

assume that any component that is determined to be atrial by all three properties
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has been properly classified. With these classifications complete, we remove each

component that is not classified as atrial, replacing it with a vector of zeros. We

can now perform the inverse matrix transform to the principal components matrix

to obtain an atrial process extraction from our ECG data set. We can then freely

evaluate the properties of the atrial signal for signs of atrial fibrillation.

6.4 Data Study

To demonstrate the merits of this method we compare its performance with two other

common methods, a more simplified eigen-value PCA-based (EPCA) method [15] and

QRS cancellation from averaged beat subtraction (ABS) [110]. Evaluation of each

method was based on two metrics of atrial extraction, the presence of the F-wave

in the extracted signal [108] and the full removal of the QRS process [110]. We

tested each method across 18 ECG signals from healthy patients. The use of healthy

patients is important to control for the non-stationary effects of atrial fibrillation that

can make it difficult to detect the F-wave signal [14].

The F-wave within the atrial process is a sawtooth-like wave with a frequency of

4.7 − 5Hz [108]. We will perform a bootstrapped F -test to determine if a signal is

present in that range for the atrial extractions. We will then evaluate the power of

the signal for the F-wave to determine how much of the signal has been successfully

extracted. The power of each signal is considered relative to the baseline of the

extracted series.

To examine the removal of the QRS process, we will look at the mean of the

difference between the original signal and the residual ventricular components at each

QRS peak. The smaller this difference is, the lower the number of misclassifications
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of ventricular components that have occurred. With these two metrics, we will be

able to evaluate a proxy of both the false-detection (ventricular misclassification) and

missed-detection (atrial misclassification) for each method.

The data used in this study is from the PhysioNet archive [42]. We used the

MIT-BIH Normal Sinus Rhythm Database [10] from the Arrhythmia Laboratory at

Boston’s Beth Israel Hospital, where five men, aged 26 to 45, and 13 women, aged 20

to 50, were found to have no significant arrhythmias. For this data, there were two

leads recorded and for consistency we used only lead one from each patient. Lead

one was chosen for analysis because of its robustness against changes in position

and orientation of the heart [17]. The data was sampled at .08Hz and 50 seconds

of data was recorded for each series. We removed the first 30 seconds of the series

to avoid possible non-stationarity from the person relaxing as the testing procedure

commenced [108]. This left us with a 20 second long time series of each patient.

Table 6.1: Atrial extraction method comparisons

Advanced PCA Eigenvalue PCA Average beat subtraction

QRS Peak µ̂ = .473 µ̂ = 1.836 µ̂ = 1.391
σ̂ = .0075 σ̂ = .7536 σ̂ = .7817

t-test for
H0 : µ̂APCA ≥ µ̂i p0 = 3.18× 10−7 p0 = 5.64× 10−5

Relative peak power µ̂ = .0377 µ̂ = .0097 µ̂ = .0074
4.7− 5Hz σ̂ = .0161 σ̂ = .0062 σ̂ = .0048
t-test for

H0 : µ̂APCA ≤ µ̂i p0 = 8.59× 10−7 p0 = 3.08× 10−7

Relative run time µ̂ = 1672.928s µ̂ = .166s µ̂ = .047s
σ̂ = 619.571s σ̂ = .020s σ̂ = .005s
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Comparison Of Atrial Extraction Methods

Base Signal

Advanced PCA

Eigen-value PCA

Averaged Beat Subtraction

Time

Figure 6.2: Illustration of a ECG signal and comparison of the advanced PCA, eigen-
value PCA, and average beat subtraction atrial extraction methods.

Upon completion of the extractions for each series, we found that there is a signif-

icant improvement gained across both metrics when the advanced PCA approach is

used. The full results of each series are given in Table 6.1. We also computed a Welch

t-test for each metric, comparing our method to the reference methods, and found

that the increase in performance was significant for both metrics. From graphical

comparison of the extractions in Figure 6.2 and the other 17 series, we see that there

is a reduced level of background noise persisting in the advanced PCA method. In ad-

dition, two other problems are found in the reference methods: after extraction, QRS

peaks can persist and, there is over compensation for QRS peaks causing negative

spikes.

We also wanted to see how well the new method compared to currently used

methods with 12-lead data. In the 2006 paper by Langley [58] they showed that
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the best 12-lead methods had a QRS peak reduction of 81.8% (.18mV remaining on

average compared to .99mV originally) for the spatiotemporal QRST cancellation

method. For our data we had an average QRS peak of 2.023mV. Comparing this to

the QRS peak after extraction, we had a reduction of 76.6%. This is less than the

best 12-lead method but much better than the other single lead methods.

Another consideration is the run time of these algorithms. The APCA method is

a computationally heavy procedure, running just shy of 28 minutes on average, unlike

the alternative methods that are much simpler and more efficient, with times of less

than half a second. The complexity of the APCA method does require that greater

care be taken for optimization; however, this was not the focus of this research. With

further refinements we would expect the APCA method to come down in computer

cost but not to approach the timing of the alternatives.

6.5 Conclusion

The advanced PCA method defined here for extracting atrial signals in ECGs is an

improvement on the current standard methods used for single leads and is much closer

in performance to 12-lead methods in performance. In the event that single leads are

used in a clinical setting for the reasons of ease of use or comfort for a patient, use

of this methodology is recommended for evaluating the atrial processes in the heart.

The only considerations that should be noted are that this method can come at a high

computational cost because of its complexity and that it would not be applicable in

settings where instantaneous analysis is needed. Overall, we feel that this method is

a significant improvement on standard methods and that its implementation should

be considered by practitioners and researchers alike.



Chapter 7

Modeling Major Junior Hockey

7.1 Introduction

As ice hockey continues to grow in popularity [23], we are seeing a shift in the way we

evaluate the quality of the players [64]. Teams, media and the public are moving away

from qualitative valuation of a player’s success based on personal observation and

towards quantitative valuation [66]. The current surge in statistical analysis of hockey

outcomes has led to improvements in data collection [65] and analysis methods [100],

but as a sport there is still a lack of quantitative methods for evaluating many areas

of the game [104].

Four questions in hockey that lack significant statistical analysis are of interest:

How do we evaluate neutral-zone play? How can we select the optimal line combina-

tions? Can we identify when a player is under- or over-performing during a game?

And last, can we predict with any precision how a game will progress and manage

the roster to optimize the potential for winning? We set out to provide solutions to

these problems by (1) developing a new model for and statistics of neutral-zone play,

113
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(2) using machine learning techniques to choose optimal lines, (3) modeling player

effects on game events, and (4) applying time series methods to predict future events.

7.2 Current State of Statistics in Hockey

Like many other sports, statistics in hockey are currently in transition from sim-

ply using reports on counts of game events to using advanced statistical tools and

developing exciting new metrics of in-game performance [67]. Traditionally, hockey

statistics have focused on comparing the simple statistics found on the game sheet

(goals, assists, etc.) of players and teams, with little focus on the effects of the other

players on the ice [137].

The first advancement towards evaluating player contributions outside of these

game sheet statistics was the widespread implementation of a goal differential for the

time when a player is on the ice. Known as the plus-minus rating, this measurement

of the difference between a player’s goals for and against was first introduced at a

professional level in the 1950s when Emile Francis starting using it with the Montréal

Canadiens. It grew in popularity throughout the National Hockey League in the

1960s and was recorded by the NHL following the 1967 season after being introduced

to the public by St. Louis Blues reporter Gary Mueller [97].

Following in the same vein as the plus-minus rating, in the early 2000s Jim Corsi,

goaltending coach for the Buffalo Sabres, developed a metric reporting the differential

of shot attempts by each team during a game [67]. Named the Corsi rating, the

statistic has been shown to be highly correlated with puck possession [88], an area

that had previously been difficult to track. This statistic is growing in popularity,

with many media outlets using it as an indicator of player quality [67].
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Another very similar metric proposed is the Fenwick rating, which counts shot

attempts but excludes blocked shots [28]. This metric is suggested to be a closer proxy

to puck possession for large amounts of data [88]. The Fenwick rating was designed

by hockey blogger and engineer Matt Fenwick [28] and is demonstrative of how the

majority of development in hockey statistics has come from amateur statisticians on

blogs in the past few years.

Following the 2013 season, many of the top amateur statisticians in the blogging

community were hired by NHL teams to expand their use of statistics [66]. As the

leading innovators moved to roles behind closed doors, the role of advancing statistics

in hockey fell back upon the academic world. This has been demonstrated in a 40%

increase in published works on hockey statistics from 2013 to 2014 on Google Scholar.

Continuing this trend, researchers from Carnegie Mellon, Brock and St. Lawrence

University have continued to develop new methods, from spatial modeling of shot

quality to evaluation of diversity of player nationalities on team performance [114].

One such advancement is the introduction of a logistical regression approach for

evaluating player skill. Total Hockey Rating (THoR) [100], is a penalized logistical

regression model for the probability of a goal being scored in the next 20 seconds

that includes the majority of potential predictive variables. One of the variables

used is an indicator for a player being on the ice during an event (shot, hit, face-

off). After accounting for all potential effects from other variables and penalizing to

minimize potential correlation of input variables, a transformation of the coefficients

for player indicators is used to produce the THoR values. The transformation of

(βplayer − .5) × 80 × 82/6 is considered as the expected number of wins over the

average player in a season, the justification being that there are roughly 80 events in
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a game and 82 games in a season and it takes about six goals to ensure a victory.

Many of statistical analysis methods currently in development are not being used

by NHL teams [114]. This is the result of a long-standing culture of anecdotal analysis

[80]. In addition to that, the teams that are embracing quantitative methods are not

providing many of the results to the academic world, in an effort to maintain their

competitive advantage. In the near future, there will be real-time tracking of player

movement on the ice [35] and a sharp increase in quality and availability of data

for study of hockey at a professional level. The methods proposed in this chapter

are designed to work within the existing framework of quantitative research while

providing insights that have not been explored before in the academic domain.

7.3 Neutral Zone Play

In a recent article published in the Toronto Sun [104] Steve Simmons spoke of the

lack of valuation of neutral zone play that is provided by the myriad of player metrics

calculated today. For this reason we find it essential to introduce a way of under-

standing neutral zone play from a statistical vantage and to present several metrics

that result from this methodology.

The neutral zone, the area between the blue-lines in the middle of the ice hockey

rink, in hockey is thought of by many as the place where games are won or lost. The

New Jersey Devils’ famous trap system is an example of how strong neutral zone play

generates success on the score sheet [29]. Outside of qualitative observations on the

strength of a team, tactic, or player in the neutral zone, there is little in the way of

information about the play in this area of the ice. With few recorded game events

coming from the neutral zone, hits and penalties being the most common, there is
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little data to employ and no identifiable event that is considered a success in the same

light as a shot on net or a goal.

This leads us to evaluate what we should consider a success within neutral zone

play. At its most basic, success can be defined as the ability to control which zone

the puck moves to from the neutral zone. We can break this idea of success down

into two independent events: either a team or player enters the neutral zone with the

puck from their defensive zone and then successfully enters their offensive zone, an

offensive success, or the opposing team carries the puck from its defensive zone into

the neutral zone and then a team or player takes control of the puck and navigates

out of the neutral zone, a defensive success.

These situations can be treated as two separate processes, and each process can

be modeled as a Bernoulli trial with an estimated probability of success. Another

way to think of this is as follows: If player X carries the puck into the neutral zone

from their defensive zone, what is the probability of that player’s team successfully

carrying the puck into their offensive zone?

To model these processes we will use a maximum likelihood estimator of the

probability of success in a Bernoulli trial. We consider the sum of all neutral zone

successes for one situation as Ys ∼ Binomial(n, p) and one game’s realization as a

fixed value y from Ys. With this, we are able to estimate the probability of success,

p, to be

p̂ =
y

n
, (7.1)

where n is the number of neutral zone events that occurred during the game.

The obvious question here now is this: How do we apply this model to ice hockey

over several games or even a season? For this we need only to extend this estimator
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to include the larger portion of data. That is to say, for an entire season, with the

games numbered 1, 2, ..., N − 1, N , the estimator becomes,

p̂season =

∑N
i=1 yi∑N
i=1 ni

. (7.2)

Now that we have a model to describe the events in the neutral zone, we can

create a set of metrics for evaluating the play of an individual or team. The first set

of metrics would be direct computation of equation 7.2 for a given type of success.

This would allow us to have statistics for offensive, p̂O, and defensive neutral zone

success, p̂D. These would give us an easily comparable value of each player in a league

and two simple metrics for a player’s success in the neutral zone.

We can take these statistics one step further to attain an overall neutral zone

effectiveness score. For this we want a statistic that combines both the offensive and

defensive situations and compares a player’s skills to that of a league or team average.

To do this, we determine the cumulative difference of the estimated probability of

success over the average for the group. Thus, we define the estimated neutral zone

differential (END) for player X relative to group G as

END(X,G) = (p̂O(X)− p̂O(G)) + (p̂D(X)− p̂D(G)). (7.3)

This statistic gives an estimate of the success a player can be expected to have

in the neutral zone. A negative value would indicate that the player’s play does not

positively affect neutral zone control. The opposite is true for positive scores, which

would indicate that the player can be expected to control the neutral zone when on

the ice.

Having these statistics is a good start to evaluating neutral zone play, but without

the ability to compute them they become useless. Hockey presents several unique

challenges in designing useful statistics. The free-flowing manner of play and limited
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data on puck possession that is currently recorded for hockey statistics makes direct

calculation of these statistics from the existing data nearly impossible.

The primary method we recommend is direct game time recording of neutral zone

attempts, leading to estimates of the values for yO, nO, yD, nD. This method does

pose some difficulties, as there are some neutral zone plays in hockey that may be

considered non-events or may be difficult to describe as failures or successes. For this

reason we define an offensive neutral zone success for a team, as a play where the

puck begins in the defensive zone under their control and ends in the offensive zone

under their control without the other team gaining control of the puck and leaving the

neutral zone. We include in this situation the case of dump-in attempts (shooting the

puck into the other team’s defensive zone) that are recovered by the attacking team.

In addition, non-events occur when play is stopped in the neutral zone for almost

any reason. The exception is offside offensive player stoppages, which we consider

failures. All other events are considered failures.

As for defensive neutral zone play, the opposite holds true; Any event where the

offensive team does not have control of the puck in the offensive zone after playing

through the neutral zone is a success. It does not matter which end of the ice the

defending team skates into when it gains control of the puck. There may be some

ambiguity when the puck becomes contested in the neutral zone, but we will maintain

that this is one event until the puck leaves the neutral zone under one team’s control.

Differentiating between a team’s and a player’s neutral zone statistic will be done

by using the data for the entire game for the team’s statistic and only the subset of

data when a player is on the ice for the individual’s statistic. This may be problematic

in fast-paced leagues where the teams change players quickly on the fly, but a keen
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eye and use of existing methods for tracking players can eliminate this problem.

When recording neutral zone data is not feasible, we can identify events within a

game through the use of already-reported events as proxies. Depending on the league

and the data available, it may possible to identify reasonable proxies of each type of

event. Using the NHL as an example of the possible data available, we can use the

league’s online interface to obtain data, in real time, of where the puck is on the ice,

who is on the ice, passing attempts, shot attempts, face off outcomes, and giveaways.

Using some of this information, we can produce a decision process for determining

whether an event has occurred and whether it was successful. This decision process

would vary depending on the league and, as such, should only be thought of as a

crude approximation for the neutral zone processes.

7.4 Optimizing Line Selection

The choices made about whom to play and what lines to use during a hockey game

can have a large impact on the outcome. Historically, many of the top teams in

hockey have had strong lines with a significant effect on the game [20]. Usually the

problem of choosing lines is resolved using anecdotal evidence to justify a certain set

of lines [74]. This practice is not particularly scientific, barely resembling qualitative

analysis. This problem can be quantified by using statistics, allowing us to optimize

the choice of line combinations.

No matter which metric we wish to examine over for a line combination, it is not

feasible to check every potential set of lines for the team’s roster. For example, if there

were 16 forwards and 8 defencemen, there would be 1.7 trillion possible choices, far

more than we could measure in a reasonable amount of time with standard computing
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power. To make this problem more feasible, we work with a team’s coaching staff to

produce a set of potential line combinations.

To be able to optimize the line combinations for a team, we need to quantify

success on the ice and define a metric for a particular combination’s effect on this

success. Success on the ice can be considered as scoring a goal on the other team’s

net, while we can also claim that stopping the other team from scoring is success of

another type. Assuming that the actions in the current play can lead to changes in

momentum that can lead to scoring within the next minute, we propose using two

Boolean response variables for measuring on-ice success, goal scored by one team in

the next 60 seconds and goal scored by the other team in the next 60 seconds. If we

take a game and divide it into 30-second blocks, identifying which players were on

the ice in that period, we can now use this data as indicator variables for a regression

problem.

Using logistic regression we can identify a player’s effect on the probability of

goals both for and against during a game. If we also include the line combinations

as two- and three-player interaction terms, we now have the full structure we expect

during the game. This could also be extended to include all five-player combinations

or the interactions of the two- and three-player interaction terms, but we assume

that these high-level interaction terms are negligible. We are also concerned with

aliasing and misleading results when introducing higher-order interaction terms due

to the limited amount of data available during the season. It may be possible if teams

were consistent across multiple seasons and we used smaller time intervals to obtain

reasonable estimates of the higher-order interaction terms.

We can also include goaltender terms in the analysis if that data is available. The
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choice of goaltender will affect the goals against that a team receives in a game and

in some situations they can be involved in offensive contributions. We will include

the goaltenders in the model but not in the decision making for line combinations.

In situations where no clear starting goaltender is decided for a team, the inclusion

of the goaltender in the decision making from this method may be beneficial.

It is worth noting that we assume that the teams are at even strength during the

30-second intervals used. In many situations where one team is not at even strength,

the line combinations that are used do not match with what could be expected during

regular play. Additionally, the distribution of forwards and defencemen may not be

three-to-two as we are modeling here. For these reasons, we exclude the 30-second

blocks where penalties occur during this analysis. These blocks are used in section

7.7.5 when attempting to predict trends within the game.

Now, for each set of line combinations, we can perform a logistic regression for

both dependent variables and obtain estimates of the effects of each line through their

coefficients. Then for the probability of goals for we have,

Pgf = L(β0 +
18∑
i=1

βipli +
3∑
j=1

γjdj +
4∑

k=1

ζkfk + +
2∑
l=1

γlgl)), (7.4)

where pli is an indicator variable for each player on the ice, dj and fk are the indicators

for the forward and defensive lines on the ice, gl are the indicators for the goalies and

L is the logit function.

We would like a pessimistic estimate of the overall effect each possible line combi-

nation can have on the game. Assuming that the coefficients from our regression are

normally distributed, we can estimate the lower α confidence limit for the coefficients

on the goals-for model and the upper 1 − α confidence limit on the goals-against

model. If we were to look at the pessimistic net difference in effect each line has on
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the goals-for and -against probabilities, we will have a measure of the effect on success

that the potential line combination has.

∆α = (
18∑
i=1

(βi,gf + Φ(α)S(βi,gf )) +
3∑
j=1

(γj,gf + Φ(α)S(γj,gf ))

+
4∑

k=1

(ζk,gf + Φ(α)S(ζk,gf )))− (
18∑
i=1

(βi,ga + Φ(1− α)S(βi,ga))

+
3∑
j=1

(γj,ga + Φ(1− α)S(γj,ga)) +
4∑

k=1

(ζk,ga + Φ(1− α)S(ζk,ga))).

(7.5)

Determining ∆α for each combination of lines in our potential set, we can identify

the optimal combination by the one with the largest ∆α. Teams can adjust the

significance level, α, used for the pessimistic difference depending on the situation

they are in. We recommend using α = .1 in most situations in which we would like

a proven productive line combination. Line combinations with little data will have

larger variation on their coefficients, causing new lines to be undervalued at α = .1.

With large changes in personnel available to a team, it may be advisable to relax the

significance to greater than .1 or in situations where a team has greater prior success

and little change, it may be advisable to use a smaller value.

Further analysis of the role of α can be performed. Specifically, one could create a

framework or function that gives a choice or range for α depending on the factors at

hand. Some of these factors are: games played in the season, strength of opponents,

availability of players, days until next game, team standings, and importance of the

next game. This is not the focus of this study and is considered as potential future

work.

To mitigate the over-fitting bias based on line combinations that have larger

amounts of time together, we propose using a bagging majority decision algorithm
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to select the optimal line combination. In a bagging majority decision algorithm, we

repeatedly sub-sample the available data with replacement and identify the optimal

line combination for that sample. The line combination that is most often the optimal

line is the one we select as the truly optimal line.

The size of the sub-samples will depend on the amount of data available. Ide-

ally, one can use a small portion of the data while retaining the significance of the

model. By using smaller portions, we can perform more repetitions without fear

of large amounts of duplication. The resulting collection of optimal models for the

sub-samples can offer some insight to the team by giving a clear best combination or

possibly a subset of combinations that perform similarly well. From this information

the coach can tweak the line combinations to best fit the personnel available to them

on a given night from the pool of preferred choices.

7.5 In-game Player Monitoring

Many of the methods designed to aid in the evaluation of a player’s impact on the

outcome of a game are applied historically, in an offline context [65]. It is conceivable

that simple count statistics, such as shots, saves, etc., could be reported as the game

progresses, but these are not relative to how we expect each player to perform, or

provide unsupervised continuous monitoring. In an aim to develop a straight forward

and visually compelling method to provide real-time in-game player monitoring, we

look to methods from traditional quality control theory.

An appealing method for providing this real-time reporting is the exponentially

weighted moving average control chart (EWMA) that we described in section 2.9.2.
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An EWMA chart reports the exponentially weighted cumulative standardized devia-

tion of a player’s stat values during a game to their expected value. As an example,

a player’s EWMA value for their Corsi rating is

EWMACorsi(t) = λ
T − Corsi(t)

S
+ (1− λ)EWMACorsi(t− 1), (7.6)

or equivalently,

EWMACorsi(t) =
t∑
i=1

λ(1− λ)i−1
T − Corsi(i)

T
, (7.7)

where T is the expected or target value, λ is the weighting for the data collected at

time t, usually selected to be .2 and S is the standard deviation of a player’s Corsi

rating.

The value of our EWMA statistics will rely on a choice of T and estimation of

S. Depending on the outcome desired and the stationarity of the player’s statistics

throughout the year, the target value can be the mean of the last stationary section

of games or an entire season if the individual’s play has not changed significantly

throughout. The standard deviation estimate should be made from the same set of

data as the mean. Another option for the target value is to choose a value that is

desired for the player to meet.

Then under the null hypothesis that H0 : µCorsi = T , we have

EWMACorsi(t) ∼ N(0,

√
λ

2− λ
[1− (1− λ)2t]). (7.8)

It is important to note that we are standardizing the EWMA metric to allow for

reporting of values that are comparable across players. We can now test at any point

whether their Corsi rating follows the null hypothesis or is significantly different. For

this we recommend using α = .05 significance limits, ±1.96 (or ±2 for simplicity in

reporting to the public [69]).
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7.6 Predicting Future Trends in Game Play

Another tool we can use to assist with in-game decision making, along with player

monitoring, is to provide predictions of future trends within the key metrics of game

play. The ebb and flow of every hockey game is different, with many unique situations

presenting in each one. The objective would not be to predict these situations but to

model the controllable effects and attempt to determine whether temporal correlation

exists in the resulting residuals. If we can model the residuals with a predictive model,

we can determine potential future values or ranges for key statistics and use the known

controllable effects in the model to maintain a statistically advantageous position in

the game.

After identifying the optimal line combination for the game, we can use this same

pool of variables to model the variable of interest. In addition, we may want to

include uncontrollable variables such as opponents, penalties and game location to

further explain the outcome of the game. Once we have the selected model for the

metric, which could be determined by any reasonable method (stepwise, stagewise,

LASSO, etc.), we will investigate the residuals from this model. From organizing the

variables into contiguous blocks of 30 seconds, we have a time series for our residuals.

To model the temporal effects in our residuals, we will use Thomson’s periodic

reconstruction method, for prediction as described in Chapter 5. Using the boot-

strapping and boosting extensions to this method, we can obtain a distribution on

the predictions at each time step and, in addition, on the potential randomness that

exists in the game. Using these distributions for the predicted values, we can give

with relative certainty a prediction of how the flow of the game will go outside of

player choices and uncontrollable variables. We can use this to ensure that we play
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the right people for the situation. For example, when the other team is expected

to play poorly, we may put on strong offensive players to try to exploit their dimin-

ished play. As the choices a team makes will affect the future outcomes, it becomes

important to update the predictions often.

7.7 Data Analysis: Kingston Frontenacs

To gain better insight into the use of statistics in hockey and obtain data to test our

methods, we worked with the Kingston Frontenacs of the Ontario Hockey League.

Acting as the team’s analytics group, we were able to identify the needs of the team

and areas, we could improve the quantitative methods used in decision making.

7.7.1 Data Collection

The first task we needed to address was how to acquire data from the games. The

data we required was shot attempts, neutral zone events and the active players for

each event. Initially we thought that this could be accomplished with hand written

reports. While during our time with the team we did see rival teams’ statistics groups

use hard-copy reporting, we found this to be far too slow for the rate at which the

games produce data. In addition, the time required to transcribe hundreds of events

per game made this impossible.

Aiming to streamline our data collection, we designed a JAVA program to easily

record game events. Splitting the data collection into three tasks (Shots, Neutral

Zone, and Shifts) with separate collection screens, we were able to vastly increase the

velocity of data we could process. The three panels used in the latest version of the
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JAVA program are shown in Figures 7.1, 7.2, and 7.3.

Figure 7.1: Shots panel from data collection program.

The JAVA program stores the data collected in Microsoft Access database (.db)

files, which we were easily able to manipulate in R. To fill the three tasks required

to collect data at each game, we hired undergraduate students from the Queen’s

University Department of Mathematics and Statistics. For home games, we would

sit in the press box above the game with a clear view of all play. This allowed us the

ability to follow the play and collect data effectively. The away games were a much

more difficult task. After collecting the scouting film (a copy of the game recorded

by the home team) from the Frontenacs, we would watch the games in classrooms.

Several data quality issues did arise when we used this system. First, the video quality

was highly variable, with portions of games missing, poor definition, or no audio. This

took some getting used to and required that some games be watched more than once
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Figure 7.2: Neutral zone panel from data collection program.

Figure 7.3: Shifts panel from data collection program.
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to ensure that the data was collected correctly. The other major problem was that

the film followed the movement of the puck, making it difficult to track which players

were on the ice at all times. The assumption that players maintain set lines during a

game is not reasonable in many cases, so missing data was an issue. This again was

dealt with by watching the video multiple times, increasing training of data collectors

and having supervisors help to ensure that events were not missed.

Our first task was to provide summary statistics to the Frontenacs on player Corsi

ratings and other counting statistics. Writing our own code to evaluate the game data

collected in R, we were able to quickly report the information of interest to the Fron-

tenacs. As the season progressed, we continued to add more simple statistics to our

reports, including shooting percentage when a player is on the ice and special teams

statistics. On the basis of the feedback we received, we also provided information on

recent player performance (last five and ten games) in addition to season totals.

7.7.2 Neutral Zone Statistics

After satisfying the reporting interests of the Frontenacs, we began to evaluate some

of the methods we proposed in this chapter. To test these methods, we transformed

the data into entries that are cumulative statistics for 30-second blocks of data. The

variables included are described in Table 7.1. Using this data we were able to in-

vestigate the relationship between goal production and neutral zone statistics, player

contributions, and temporal trends.

Goal production and stopping the other team are the main objectives in hockey

and can be considered the most important statistics for a game. We wanted to

test whether offensive and defensive neutral zone success were correlated with either
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Table 7.1: Variables used in statistical modeling of hockey

Variable Description

Goal-O Indicator variable for the event that a goal is scored by the Frontenacs
in the next minute.

Goal-D Indicator variable for the event that a goal is scored by the opposing team
in the next minute.

Corsi Shot attempt differential during the 30-second interval.
NO Difference between the Frontenacs’ neutral zone successes and failures during

the 30-second interval.
ND Difference between the opponents’ neutral zone successes and failures during

the 30-second interval.
Pen Integer variable for the number of players below even strength a team has on due to

penalties being served during the 30-second interval.
(it can start or end in this block and still be considered occurring).

t Start time for the 30-second interval.
Player number The indicator variable for each player on

the ice during the 30-second interval.

team’s goal production to demonstrate that teams hoping to win should consider

using these statistics. To test this, we performed two multivariate logistic regressions

using Goal-O and Goal-D as the dependent variables and Corsi, NO, ND, and Pen

as the pool of independent variables.

Testing these two models, we found that neutral zone offensive success, Corsi rat-

ing, and penalties were significantly correlated with the Frontenacs’ goal production.

Neutral zone defence was the only variable for offensive goal production that was

not significant. Conversely, we found that neutral zone defence was significant in

the model for the opponent’s goal production, with Corsi rating and penalties still

being significant. We see, when we look at the regression model summaries in Table

7.2, that the coefficients for the neutral zone statistics are positive when significant.

This aligns with what we expect: that more neutral zone success leads to more goals



CHAPTER 7. MODELING MAJOR JUNIOR HOCKEY 132

scored.

Table 7.2: Summary of logistic regression model for goal production, including p-
values for the hypothesis H0 : β = 0

Dependent variable

Goal-O Goal-D

Corsi β = 0.372 β = −0.451
p = 0 p = 0

NO β = 0.150 β = 0.059
p = .0096 p = .1857

ND β = 0.098 β = 0.173
p = .0570 p = .0023

Pen β = 0.159 β = −0.373
p = .0338 p < .0001

Constant β = −2.889 β = −2.856
p = 0 p = 0

Observations 7, 200 7, 200

We also wanted determine whether there is a relationship between Corsi rating and

the neutral zone statistics. We found that the Corsi rating is significantly correlated

with both neutral zone statistics. This also makes logical sense, as you need to get

the puck into the zone to have a chance to get a shot on goal. Now we must ask

ourselves: Do we need these extra statistics if we can monitor the Corsi rating? We

believe so. By following the argument used to validate the reporting of the Corsi

rating in addition to goal production when they are highly correlated, we argue that

the addition of these statistics gives more information about what is going on within

the game. If we were to report just the Corsi rating, we would not know what neutral
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zone actions resulted in that Corsi rating. We do not go so far as recommending

replacing the Corsi rating with our neutral zone statistics; we recommend only that

they both be used.

The END statistic was not used in the previous modeling but we wanted to

investigate its significance. To first test the significance of this statistic on the team

level, we examined the correlation between the team’s END statistic and the outcome

of the game. Regressing the Frontenacs’ END statistic on-to the outcome of the

game, we found that there was not a significant relationship (p-value for the coefficient

of .226). The logistic regression model did have a coefficient of 3.01, which makes

sense, as for games in which a team has a positive END statistic, the team is more

likely to win. The lack of significance may be attributable to the single season of data

(60 games of data). This does not validate the use of the END statistic for teams

and without more data or data on other teams, we are unsure of its true effect.

To check of the validity of the END statistic for players, we examined the per-

ceived quality of the players with the highest END statistics. The logic behind this

was that players who are regularly in the top two lines (six forwards and four defense)

would be the highest-quality players and should perform best relative to the rest of

the team.

To test this, we analyzed the hypothesis that each player’s average season END

statistic was greater than zero, i.e., H0 : E(END(player, Frontenacs)) ≤ 0, H1 :

E(END(player, Frontenacs)) > 0. Using a one-sided t-test and reporting the p-

values of each player in Table 7.3, we found that six of the eight players with p-values

below .01 were players on the top two lines. We then performed a logistic regression

examining the effect of the p-value for each player on his position in the lineup. We
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Table 7.3: Summary of player END hypothesis tests

Player ID Top two lines p-value

17 Yes < 10−19

22 Yes < 10−19

4 No 5.29× 10−11

19 Yes 5.26× 10−8

16 No 4.34× 10−7

11 Yes 3.83× 10−6

21 Yes 8.61× 10−6

12 Yes 2.24× 10−3

14 No 0.010
1 Yes 0.083
20 No 0.124
13 No 0.936
3 No 0.948
5 No 0.970
6 No 0.977
9 No 0.996
7 Yes > 1− 10−5

10 No > 1− 10−6

8 No > 1− 10−8

15 No > 1− 10−10

18 Yes > 1− 10−14

2 Yes > 1− 10−15

Log. regression: P̂ (Top two lines) = L(.59− 1.59×p-value)

p-value for coefficient significance: .0947

found that there is significant evidence (at α = .1) that the lower the p-value, the

greater the players probability of being on the top two lines. If we believe that the

team has a strong understanding of player quality, we can think of a player’s position

in the lineup as a proxy of overall skill. From this analysis, we believe we have shown

the validity of the END statistic for measuring some part of a player’s skill set.
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7.7.3 Line Selection

Next, we want to determine the applicability of our method of optimal line selection.

This analysis was done retrospectively on the season to determine which line combi-

nation would have been a strong candidate to use during the playoffs given the players

available at the end of the season. Selecting line combinations used in the final 10

games of the season and first round of the playoffs as the potential set, we were able

to obtain a manageable set of 16 line combinations. We did not include indicator

variables for the goaltenders in our model. This is due to the data not being readily

available to us at the time of analysis and that for most of the season, including all

games in the playoffs, the Frontenacs exclusively played their starting goalie.

Using the entire season as our data set, we performed 50 repetitions of 20% sub-

samples. When we examine the histogram of the choices for each sub-sample in Figure

7.4, we see that line combination 14 is the optimal choice, with selection in 22 subsets

out of 50. We repeated this at different levels of confidence interval to see the effect

of variability on our optimal line combination. As we selected a larger value for α, we

found line combination 16 to be the most often selected set of lines. At α = .45, as

is shown in Figure 7.5, we found that combination 16 was chosen 23 times, compared

to nine now for combination 14.

Examining these two combinations, we see that combination 16 contained play-

ers who played considerably less frequently and had much higher variance on their

regression coefficients. These players played more commonly in games against easier

competition, not in the “must-win” games. We would not recommend using combina-

tion 16 in an important game as the lines are unproven. We would instead recommend

combination 14.
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Figure 7.4: Histogram of optimal line selections for 50 20% sub-samples at α = .1.

Figure 7.5: Histogram of optimal line selections for 50 20% sub-samples at α = .45.

We wanted to know how close to optimal this line combination is. To gain some

insight, we asked the Frontenacs’ coaching staff to evaluate line combination 14 and
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give their opinion. They stated,

That line up you selected was close to our best line up throughout the

season.

They went on to give their choice of top line for the playoffs, which was combination

8 of our possible sets. We found that the coach’s choice was selected three times at

α = .1 and once for α = .45. It is worth noting that both the coach’s and our analysis

selected the same optimal defensive pairings.

There were two problems with the coach’s forward line selections within this anal-

ysis. First, because of injuries, the skaters selected for these lines played very few

games together throughout the season. This created very high variances on the for-

ward line interaction terms. Second, the majority of games played together by the

top two lines were during the very tough playoff series against North Bay. The poor

results in these games led to a large bias in the coefficients for these lines.

The difference in line selections demonstrates a flaw in the context of this analysis.

We want to provide a proven (shown to be significant) set of lines that provides the

best chance of winning. Many combinations may be untested and can be overlooked

by this method. Another major problem is the difference in the amount of data

available for all line combinations and the potential bias of the results from games in

which uncommon line choices were used. Line combination 14 was identified using

the entire season of data, which makes it much closer to the best line combination of

the Frontenac’s season, as is reflected in the quote from the coaching staff.

We stand by our method for situations where a team wants the optimal low-

risk line choice. Adjusting α, we could get a riskier choice, offering higher variation

but also possibly higher gains. Due to the affect of the choice of α, we do think
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that improvements could be gained by developing a decision making framework or

function for identifying the correct α value for a team’s situation and coach’s mindset.

Additionally, more variables could be introduced to improve the accuracy of the model

to a specific upcoming game. Some variables that could be included are indicators

for home games, opponents, opposing goaltenders, game significance, and time since

last home game. Lastly, to combat the issue of small samples of combinations we can

take a subset of the data that would better represent the play of the line members

together. However, this would introduce bias in our choice of optimal combination.

7.7.4 Player Monitoring

To demonstrate the utility of EWMA chart monitoring that we discussed in section

7.5, we will show two ways to employ this method for easy reporting to teams. First,

we will show a retrospective view of a player across a game so that we can see how

their play progresses and observe areas where we could make in-game decisions to

improve our potential outcome. This can be used as a teaching tool after games to

help players identify areas in their game where they can improve. This can also be

used by coaches to help identify player performance trends at certain times during a

game. In fact, a more simplified control chart system was used during our reporting

of player performance throughout the season. We will also demonstrate a method for

in-game monitoring of players. This can be used for on-the-fly decision making by

coaches and can provide feedback to players for quick correction of their play.

Using the data collection methodology described earlier, we can update the EWMA

statistics for each new time period throughout a game. With this data we can plot

entire games, using time as the x-axis and the EWMA statistic as the y-axis. Putting
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in the cut-off limits for 2σ, we can determine when a player is performing significantly

differently from his regular play. The estimates of the mean and standard deviations

for the players can be updated between games to reflect their most recent play.

In the example illustrated in Figures 7.6 and 7.7, we use the entire season of data

to produce the parameter estimates of the player’s Corsi rating values. We can see in

Figure 7.6 that this player significantly out-performed his season average on multiple

occasions during this game and approximately half-way through the third period he is

playing exceptionally. We also note that he has a significant decrease in Corsi rating

in the final minutes of the game. These results could be used by the coaching staff

to identify that this player could be having a stamina problem late in the game and

that his play late in the game should be monitored in future games.

Figure 7.6: Example of a player’s EWMAcorsi across a game with 2σ limits.

To monitor the game in an ongoing fashion, we propose using a simple box plot
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approach. We will give the current EWMA statistic and limits for all player, at the

current game time on one plot. To use this in a game situation, we would need to

design a network system to allow us to run the code online while we update the

database files. If we write the data to and run the analysis on a server and load

the results to tablets or similar technology on the player bench, we could provide

real-time charts in the games. These are not unreasonable expectations for teams at

the junior or professional level, where there is already a large amount of technological

infrastructure used.

In Figure 7.7 we show an example of how these results could be displayed. It is

apparent that players numbered 5 and 11 are significantly under-performing at this

point in the game and that most of the team is playing below average. The coach

could use this information to inquire as to possible problems with players 5 and 11

or to rest them until the end of the period, when they can make a better assessment

of the player’s performance.

Overall, we have shown two easy-to-implement methods for monitoring player

statistics from a game. Neither of these methods is computationally heavy, taking

less than 30-seconds to run. In addition, the plots resulting from these methods are

easy to understand, with clear results for use by teams. We believe that with the

growth of data analysis and the integration of technology into hockey, these methods

would be beneficial tools for improving team performance.

7.7.5 Predicting Game Trends

We can use Thomson’s periodic reconstructions to produce estimates of several key

statistics. Within our analysis we have already found the optimal set of lines that
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Figure 7.7: Example of an in-game EWMANO with 2σ limits.

we can use as our independent variables. In addition, we include penalties as an

independent variable. The statistics that we can model are probability of goals,

neutral zone success, and Corsi rating. All will follow a similar framework for making

a prediction. Because of the ever-changing nature of games, when a game seems

disjointed as a result of the significant differences in play between periods or after

major events such as injuries or fights, we recommend using only the data from after

that point. This will ensure that the closest approximation to stationarity possible is

maintained for this game.

As an example, we have modeled the Corsi rating for the final five minutes of

the 11th game of the season. We used cross-validated LASSO regression to select the

optimal set of variables for our model. The LASSO model estimating the Corsi rating
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differential for a 30-second interval for the Frontenacs was

ˆCorsi = −.0085 + .0644P1 + .0442P4 − .1266P6 − .0287P11 − .0015P12

−.0222P13 + .02P14 + .0611P16 + .0525P17 + .1717P18 + .0441P22

−.0367P2P10 + .0252P14P15P16 + .2285PEN.

(7.9)

We can now take the residuals from the model and try to predict the final five

minutes. We have decided to only use the data from the 2nd and 3rd periods, as

we were concerned about changes in the flow of the game following the first period.

This appears to be a logical change point as we witnessed the Frontenacs play more

consistently in the 1st period of the first ten games of the season. We tested the

equality of variances in the residuals from the first period and the later two, finding

that they were significantly different (p-value = 0.002979).

We can see from the resulting prediction in Figure 7.8 that we should expect to

have slightly worse than even puck possession immediately and around the 57 minute

mark we should expect the other team to increase the pace of play. We expect that

the Frontenacs’ play will improve in the final two minutes. From this we can decide

to select which players or lines to go on, to ensure that we have a positive predicted

Corsi rating. For example, we may avoid putting on the defensive pairing of player 2

and 10 right now if all lines are equally rested.

This data does not appear to be strongly periodic, and the resulting uncertainty

in the periodic terms is quite large. We also notice that the confidence interval with

noise is very wide. This is most likely to be a result of the small amount of periodic

structure in the data.

The performance of this method is not as great as we would like for use in real

game situations. We believe that an increase in available co-variate data for the
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LASSO model may improve the quality of the residuals, decreasing the amount of

noise in the time series. In many situations these residuals may be non-stationary

and the use of models from that field may be more applicable.

Figure 7.8: Example of the prediction of the final five minutes of game play.

7.8 Conclusions and Discussion

As we have shown, there are many ways to improve the decision making on players

and teams in hockey through the use of statistics. Through our analysis, we have

provided a tangible framework for monitoring base player statistics including using

the new neutral zone metrics, selecting optimal lines from a potential set, monitoring

player in-game quality, and providing predictions for future events. With all of our

examples performed on real data, we have demonstrated that creating a bridge be-

tween advanced statistical methods and hockey is not as difficult as popular opinion

would suggest.
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We feel that in the next few years, as the sport and its fans gain a greater under-

standing of and appreciation for the merits of statistics, we will see a rise in many

new techniques for analyzing statistics on the sport. The techniques described here

show promise and we believe they will be useful additions to any team’s statistical

program. In particular, we believe that the END statistics and EWMA monitoring

method are methods that would have large impacts on team performance. The END

statistic is a simple and accessible metric that can be used to describe the quality

of neutral zone play, an area that is currently underdeveloped. The EWMA method

and other online reporting methods are not currently used in high levels of hockey.

The EWMA method provides easy to understand charts and can offer a great level

of in-game feedback to teams. We will recommend that the Kingston Frontenacs use

the methods described here as they move forward and hope that, with time, more

teams will follow suit.



Chapter 8

Concluding Remarks

The ability to make links between scientific fields is a powerful tool. We believe

that this thesis demonstrates this sentiment, albeit on a smaller scale, merging areas

within statistics. The problems we presented within spectrum analysis were resolved

through the use of statistical learning techniques. These new hybrid methods we

proposed were then shown to have applications to real-world problems.

Addressing several open problems within spectrum analysis, we demonstrated the

potential for statistical learning theory to aid in other areas of statistics. The two

focuses were removing supervised decisions from the spectrum estimation process

and giving statisticians the tools to make informed and unbiased decisions. This is

highlighted in the sphericity tests presented in Chapter 3 and the cross-validation

method for cutoff selection within the inverse Fourier transform synthesis procedure

discussed in Chapter 5. With the sphericity tests we were able to provide reasonable

and well-founded parameter choices for the multitaper spectrum estimation method.

For Thomson’s method of time series synthesis, we developed a method to select a

problem-specific optimal significance level for selecting periodic components. These

145
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methods demonstrated how the implementation of simple techniques from another

area of statistics can help us to avoid potentially significant mistakes in our analysis.

Along with trying to help minimize statistician bias in spectrum estimation, we

worked to reduce the bias after decisions had been made. Our bootstrap-based meth-

ods for signal detection in Chapter 4 were able to provide a significant level of improve-

ment over traditional methods, including in situations where user error is present. We

also used a boosting method in Chapter 5 to identify additional signals that may have

been missed by the naive optimization method or from incorrect user-defined cutoffs.

The addition of statistical learning procedures following statistical decision-making

can help to improve the performance of the methods. This is a useful property for

real-world data where there are large amounts of uncertainty and where correct deci-

sions may be difficult to identify.

Finally, we felt it important to tackle the most practical of time series meth-

ods, data synthesis, in Chapter 5. Building on the rich history of data modeling

and estimation, we were able to introduce improved methods for dealing with data

under ideal conditions. Applying our methods to real-world data, we were able to

examine their performance in less-than-ideal situations. We found that the methods

still performed well on real-world data, successfully interpolating New York tempera-

ture data, predicting coffee commodities market prices and, in Chapter 7, predicting

hockey statistics.

In an effort to justify and validate the methods we proposed, we studied two dif-

ferent yet challenging data projects. Firstly, with the atrial signal extraction project

in Chapter 6, we were able to demonstrate how the use of advanced methodologies

can improve on the standard practices. Identifying atrial components is essentially a
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signal detection problem with a large amount of complexity. The low signal-to-noise

ratio made this problem ideal for demonstrating the benefits of the bootstrapped

F -test. We were able to show a considerable and significant improvement on the

currently accepted methods (average beat subtraction and eigenvalue-based principal

components analysis) for both of the metrics we tested. Our one concern with the

new advanced principal components analysis method is the increased computational

cost. Because we spent little time on optimizing the code for this project, we believe

that our timing estimates are a gross overestimation of the amount of time it would

take to run the advanced principal components analysis method in an optimized set-

ting. Additionally, most atrial signal examinations are performed retrospectively by

physicians so the speed of extraction is not a vital concern.

Our final data project, evaluation of player and team performance in hockey, be-

ing a passion of ours, was not primarily focused on demonstrating how our proposed

theoretical methods could be used. Instead, we aimed to use statistical methods to

improve upon the evaluation of the game. We began by showing how, with only a

moderate computer science background, it is possible to develop an adequate data

collection program. While designing and implementing a data collection and analysis

project was a significant undertaking, we felt that many improvements in how hockey

can be evaluated were also possible. All of the methods we proposed in this project

showed promise and utility for hockey at the major junior level. We provided justi-

fication for the inclusion of our proposed neutral zone statistics in evaluating player

and team performance. We showed how quality control methods and, by extension,

hypothesis testing can be useful tools in monitoring player performance. Our method

for selecting line combinations demonstrated how regression methods can be useful
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within hockey analysis, the primary concern being the proper identification of vari-

ables that describe success in play. Ideally, through data collection, we have data on

goal production and can use this as our dependent variable. We believe that it is

integral to have accurately timed shot event data to analyze player effects properly.

This should be the major factor in designing a data collection method. Finally, we

were able to also show that the periodic data synthesis methods from Chapter 5 have

potential for use in predicting hockey trends. This method was not as successful as

we had hoped and we believe that the major issue was missing variables. We felt that,

overall, we were able to provide some innovations to the game that has captivated us

for many years. We are excited to see how these methods will be employed by the

Kingston Frontenacs this coming season in the OHL.

To summarize, we believe that the use of statistical learning tools can help in many

scientific areas. Spectrum analysis, being a poorly understood and less-often-used

field, was an ideal area for the introduction of these tools. We feel that considerable

advancement can still be made within the field of spectrum estimation. We strongly

encourage students and researchers to examine this area. Additionally, many more

research areas have application for the use of advanced spectrum analysis methods.

By partnering with leading researchers in these fields, we can increase the exposure

of spectrum analysis within the overall scientific community and further advance the

spectrum analysis methods to deal with the unique challenges of the data.

From a theoretical perspective, here are four areas in which we think that ad-

vancement can be made and that are potential examples of how to apply statistical

learning theory to spectrum estimation:

1. Through the use of regularization on the basis expansions in quadratic inverse
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theory [118], we could produce noise-reduced time-frequency estimates.

2. By clustering the frequencies within the F -test, we could produce a non-supervised

signal detection within the multitaper framework. This is similar to the optimal

α method described in section 5.4.

3. Cross-validation and bootstrapping could be used to produce optimized confi-

dence intervals on multitaper spectrum estimates where sub-sampling is avail-

able.

4. Many of the methods used within spectrum and time series analysis involve

modeling and produce residuals. There is limited analysis of the residuals in

these fields, an example being the sphericity tests we designed in Chapter 3.

By introducing more methods for analyzing and using the residuals from time

series and spectrum analysis methods, we should be able to improve on existing

modeling techniques. One such way would be by treating the residual K series

from the F -test as eigenspectra and calculating a MTM estimate, we can look

at the unexplained power from our model, examine the normality assumption,

identify outliers, and tune the model.

These are only a few of the possibilities that are not direct extensions of the work in

this thesis. We are hopeful that more research will be done on the methods proposed

within this thesis.
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