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“Prediction is very difficult, especially if it's about the future.”

— Niels Bohr
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Motivating Example

Here we have 1200 samples from a set of 7 sinusoids in noise, with the
middle 100 points missing. The signal-to-noise ratio for all sinusoids is
below .30.
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Thomson's Periodic Reconstruction Method

Overview

First demonstrated by Dr. David Thomson in 1990, under ideal conditions
(Stationarity and White Noise), we can reconstruct the periodic
components found within a time series.

The steps are:

© Multitaper Spectrum Estimation (mean of multiple windowed Fourier
transforms)

@ F-test & Complex Mean Values (regression in the frequency domain)

@ Inverse Fourier Transform of Complex Mean Values (transform model
back to time domain)
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The Multitaper Method (MTM)

@ It is the primary tool for spectral estimation that balances the
variance and bias of the estimated spectrum.
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where Y/ are the eigenspectra and ng) are the Slepian sequences in
the time domain.
@ The Slepian sequences are defined for a choice of NW, with the

parameters of NW and K being user selected.
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F-test for line components

We model the eigenspectra found when performing the MTM by windowed
sinusoids in the frequency domain at each frequency. We then perform an

F-test to determine if each model is significant. Significant models
indicate the presence of signals.

@ We assume a model of

Yi(f) = u(F)Vi(0) + (f) (3)

@ Then we test Hp : p(f) = 0 with the statistic,
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@ The F-statistic will follow an F(2,2K — 2, «) distribution if Hp is true.
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|dentifying Key Frequencies

@ When we reject Hy for a frequency at a given significance level, o, we
conclude that the data has a sinusoidal component at that frequency.

@ The complex mean value, [i(f), associated with each significant
frequency determines the magnitude of the sinusoidal component.

@ Depending on « there is a change in the set of signals found in the
data.
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Thomson's Periodic Reconstruction Method

Inverse Fourier Transform

o After identifying the significant frequencies, we set the complex mean
values of all non-significant frequencies to zero.

0o(fF) = ,l’),(f), ﬁ(f) > F(2nwfl,2,a)'
(f) = .
0, otherwise.

(6)

@ We now can take the inverse fourier transform of the complex mean
values to produce the periodic reconstruction of the time series.
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Thomson's Periodic Reconstruction Method

Application to Interpolation and Prediction

Thomson's periodic reconstruction method can be directly applied to the
problems of interpolation and prediction.

@ For interpolating a gap in the data, we simply fill the gap with a
simple interpolation (linear or mean value works well) and perform
Thomson's method. This will produce a periodic reconstruction
across the gap. Be warned that the choice of starting interpolation is
important and can affect the estimates.

@ As for prediction, we zero-pad (add zeros after last data point) the
windowed sets of data and perform Thomson's method. This will
result in predictions for the points we added as zeros and has the
added bonus of improving the frequency resolution.
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Interpolation Example: Gap Filling

Interpolation of 100 points for Fabricated Data
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Added Methods

Potential Areas of Improvement

Within Thomson's method we have identified 3 areas that we feel can be
addressed to improve the reconstruction of a time series.

@ Choice of significance level, a. (Cross Validation)

@ Improve the estimate of the periodic reconstruction. (Gradient
Boosting)

e Find confidence intervals for reconstruction. (Bootstrapping)
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Choosing «

We would like an unsupervised method for identifying the best o value for
interpolation or prediction. Using cross-validation as a framework for our
decision making we should be able to find an optimal choice.

@ Split the data into bins.
@ Remove one bin and reconstruct the data for a set «.
© Find the mean squared reconstruction error for the removed bin.

@ Perform steps 1 — 3 across all bins and calculate the mean of the
mean squared errors.

© Repeat 1 — 4 for all « values in our potential set.

O Select the o with the minimum mean-mean squared error.
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Added Methods

Interpolation Example: Cutoffs

Cross Validated Mean Squared Error for Significance Cutoff
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Improving Reconstruction

There may still be additional signals left over after the periodic
reconstruction. We will use a gradient boosting approach on the residuals
to determine if any more signals are present.
© Treat the residuals, r, as a new time series and find the periodic
reconstruction.

@ Now make a greedy model by finding argmin >, +(ve — (J¢ + 7%))?.
v

© Define the new reconstruction as §; = y;: + v and test for
significance with an F-test.

@ If the model is significant we repeat steps 1 — 3 with the updated
reconstruction’s residuals, y; — J{, as our new series.

© Continue repeating steps 1 — 3 with the new residuals until the
updated reconstruction is not considered significant under the F-test.
Then consider the reconstruction from the previous iteration as the
final boosted periodic reconstruction.
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Added Methods

Interpolation Example: Boosting

Boosted Interpolation of 100 points for Fabricated Data
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Added Methods

Confidence Intervals

Confidence intervals on our reconstructions give us a better understanding
of what we may expect the true could be. To determine the confidence
intervals we employ a bootstrapping procedure.

o

© 00

o

After creating a periodic reconstruction, sample with replacement the
residuals and create a new simple interpolation or zero-padding with
the sampled residuals added to the previously used values.

Find a periodic reconstruction with the added residuals series.

Repeat steps 1 and 2, n times (n > 60).

The resulting set of reconstructions allows us to estimate the location
and deviation at each point. This estimation can be parametric or
not, depending on your assumptions.

We can also obtain estimates of the distribution of the noise by using
the residuals from each periodic reconstructions. This will give us
confidence intervals on the noise.

For overall confidence bounds we add these two bounds together.
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Added Methods

Interpolation Example: Confidence Intervals
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Added Methods

Interpolation Example: How did we do?
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Added Methods
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